• 제목/요약/키워드: shear index

검색결과 665건 처리시간 0.027초

Predicting the shear strength parameters of rock: A comprehensive intelligent approach

  • Fattahi, Hadi;Hasanipanah, Mahdi
    • Geomechanics and Engineering
    • /
    • 제27권5호
    • /
    • pp.511-525
    • /
    • 2021
  • In the design of underground excavation, the shear strength (SS) is a key characteristic. It describes the way the rock material resists the shear stress-induced deformations. In general, the measurement of the parameters related to rock shear strength is done through laboratory experiments, which are costly, damaging, and time-consuming. Add to this the difficulty of preparing core samples of acceptable quality, particularly in case of highly weathered and fractured rock. This study applies rock index test to the indirect measurement of the SS parameters of shale. For this aim, two efficient artificial intelligence methods, namely (1) adaptive neuro-fuzzy inference system (ANFIS) implemented by subtractive clustering method (SCM) and (2) support vector regression (SVR) optimized by Harmony Search (HS) algorithm, are proposed. Note that, it is the first work that predicts the SS parameters of shale through ANFIS-SCM and SVR-HS hybrid models. In modeling processes of ANFIS-SCM and SVR-HS, the results obtained from the rock index tests were set as inputs, while the SS parameters were set as outputs. By reviewing the obtained results, it was found that both ANFIS-SCM and SVR-HS models can provide acceptable predictions for interlocking and friction angle parameters, however, ANFIS-SCM showed a better generalization capability.

직접단순전단시험을 이용한 동적이력 후 세립토의 강도 및 강성 예측법 (An Estimating Method for Post-cyclic Strength and Stiffness of Eine-grained Soils in Direct Simple Shear Tests)

  • Song, Byung-Woong;Yasuhara, KaBuya;Murakami, Satoshi
    • 한국지반공학회논문집
    • /
    • 제20권2호
    • /
    • pp.15-26
    • /
    • 2004
  • 반복삼축시험에 의한 반복하중 후 강도 및 강성의 예측법을 이용하여, 세립토에 대해서 직접단순 전단시험에서도 그 방법의 사용 가능성을 확인하여 보았다. 사용한 흙은 실트질 점토, 소성 실트와 비소성 실트이다. 반복삼축시험을 통해서 얻은 강도 및 강성 예측법을 직접단순 전단시험에 맞게 수정하여 시험 결과와 비교하였다. 특히, 세립토의 소성지수와 초기전단응력(ISSS)의 영향이 강조되었다. 연구결과는 (i) 세립토의 액상화강도비는 소성지수의 감소와 초기전단응력의 증가에 따라 감소한다. (ii)등가강성과 전단변형률의 관계에 미치는 소성지수와 초기전단응력의 영향은 그리 크지 않다. (iii) 정규화한 과잉간극수압의 증가에 따른 강도비의 저하는 세립토의 소성지수가 증가할수록 느리다. (iv) 활성도가 큰 소성실트의 강성은 과잉간극 수압의 증가에 따라 급속히 감소한다. (v) 반복삼축시험 결과를 이용한 반복하중후 강도 및 강성의 예측법을 이용하여 직접단순 전단시험 결과에 수정한 방법은 시험결과와 잘 어울리는 것으로 나타났다.

직접전단시험을 통한 암석 절리의 변형거동 및 미소파괴음 발생에 관한 연구 (Deformation Behaviors and Acoustic Emissions of Rock Joints in Direct Shear)

  • 김태혁;이상돈;이정인
    • 터널과지하공간
    • /
    • 제4권3호
    • /
    • pp.274-286
    • /
    • 1994
  • Direct shear tests were on ducted in a laboratory setting in order to investigate the shear strength and deformation behavior of rock joints. Also, the characteristics of acoustic emissions (AE) during shearing of rock joints were studied. The artificial rock joints were created by splitting the intact blocks of Hwangdeung granites and Iksan marbles. Joint roughness profiles were measured by a profile gage and then digitized by Image analyzer. Roughness profile indices(Rp) of the joints were calculated with these digitized data. Peak shear strength, residual shear strength, shear stiffness and maximum acoustic emission(AE) rate were investigated with joint roughness. The peak shear strenght, the residual shear strength and the shear stiffness were increased as roughness popfile index or normal stress increased in the shear tests of granites. In the tests of marble samples, the shear deformation characteristics were not directly affected by joint roughness. As the result of two directional shear tests, the shear characteristics were varied with shear direction. AE count rates were measured during the shear deformation and the AE signals in several stages of the deformation were analyzed in a frequency domain. The AE rate peaks coincided with the stress drops during the shear deformation of joint. The dominant frequencies of the AE signals were in the vicinity of 100 kHz fo rgranite sample and 900 kHz for marble samples. The distribution of amplitude was dispersed with increasing normal stress.

  • PDF

정상전단유동장에서 반고형 연고기제(바셀린)의 레올로지 거동 (Rheological Behavior of Semi-Solid Ointment Base (Vaseline) in Steady Shear Flow Fields)

  • 송기원;김윤정;이치호
    • Journal of Pharmaceutical Investigation
    • /
    • 제37권3호
    • /
    • pp.137-148
    • /
    • 2007
  • Using a strain-controlled rheometer [Rheometrics Dynamic Analyzer (RDA II)], the steady shear flow properties of a semi-solid ointment base (vaseline) have been measured over a wide range of shear rates at temperature range of $25{\sim}60^{\circ}C$. In this article, the steady shear flow properties (shear stress, steady shear viscosity and yield stress) were reported from the experimentally obtained data and the effects of shear rate as well as temperature on these properties were discussed in detail. In addition, several inelastic-viscoplastic flow models including a yield stress parameter were employed to make a quantitative evaluation of the steady shear flow behavior, and then the applicability of these models was examined by calculating the various material parameters (yield stress, consistency index and flow behavior index). Main findings obtained from this study can be summarized as follows : (1) At temperature range lower than $40^{\circ}C$, vaseline is regarded as a viscoplastic material having a finite magnitude of yield stress and its flow behavior beyond a yield stress shows a shear-thinning (or pseudo-plastic) feature, indicating a decrease in steady shear viscosity as an increase in shear rate. At this temperature range, the flow curve of vaseline has two inflection points and the first inflection point occurring at relatively lower shear rate corresponds to a static yield stress. The static yield stress of vaseline is decreased with increasing temperature and takes place at a lower shear rate, due to a progressive breakdown of three dimensional network structure. (2) At temperature range higher than $45^{\circ}C$, vaseline becomes a viscous liquid with no yield stress and its flow character exhibits a Newtonian behavior, demonstrating a constant steady shear viscosity regardless of an increase in shear rate. With increasing temperature, vaseline begins to show a Newtonian behavior at a lower shear rate range, indicating that the microcrystalline structure is completely destroyed due to a synergic effect of high temperature and shear deformation. (3) Over a whole range of temperatures tested, the Herschel-Bulkley, Mizrahi-Berk, and Heinz-Casson models are all applicable and have an almostly equivalent ability to quantitatively describe the steady shear flow behavior of vaseline, whereas the Bingham, Casson,and Vocadlo models do not give a good ability.

철근콘크리트 전단벽의 횡하중-횡변위 관계의 일반화 (Generalized Lateral Load-Displacement Relationship of Reinforced Concrete Shear Walls)

  • 문주현;양근혁
    • 콘크리트학회논문집
    • /
    • 제26권2호
    • /
    • pp.159-169
    • /
    • 2014
  • 이 연구에서는 철근콘크리트 전단벽의 횡하중 거동과 연성을 합리적으로 평가하기 위해서 모멘트-곡률관계를 정립하고 이로부터 단순화된 횡하중-횡변위관계를 제시하였다. 최초 휨 균열, 인장철근 항복, 최대내력, 최대내력의 80% 및 인장철근파단시점에서 모멘트와 곡률은 힘의 평형조건과 변형적합조건으로부터 정립되었다. 최대내력 이후의 곡률평가를 위한 압축측연단 콘크리트 변형률은 Razvi and Saatcioglu의 구속된 콘크리트의 응력-변형률 관계를 이용하여 최대응력의 감소계수와 횡보강근 체적지수의 함수로 제시하였다. 모멘트 평가모델은 변수연구를 통하여 인장철근지수, 수직철근지수 및 축력지수의 함수로 일반화하였다. 횡변위는 전단벽의 높이에 따라 분포된 이상화된 곡률로부터 모멘트 면적법을 이용하여 환산하였다. 제시된 횡하중-횡변위관계는 기존 실험 결과와 잘 일치하였으며, 특히 최대내력 이후의 거동을 잘 평가하였다.

국내 연약지반의 신뢰성있는 비배수 전단강도 추정을 위한 flat DMT와 인공신경망 이론의 적용 (Application of Flat DMT and ANN for Reliable Estimation of Undrained Shear Strength of Korean Soft Clay)

  • 변위용;김영상;이승래;정은택
    • 한국지반공학회논문집
    • /
    • 제20권5호
    • /
    • pp.17-25
    • /
    • 2004
  • DMT 시험은 연약지반의 공학적 특성을 파악하기 위한 현장 시험방법으로, 이 방법으로부터 구한 비배수 전단강도는 가장 신뢰성 있고 유용한 매개변수로 알려져 있다. 그러나 국외 다른 지역의 자료를 토대로 기존에 제안된 상관관계식들은 지역적인 특성에 의존한다. DMT 시험 결과는 3가지 중간 지수 - 재료지수, 수평응력지수, dilatometer modulus를 사용하여 해석이 이루어지며 특히 비배수 전단강도는 수평응력지수만을 이용하여 예측하고 있다. 본 논문에서는 먼저 DMT 시험의 국내 연약지반에서의 적용성을 살펴보았으며 DMT로부터 비배수 전단강도를 추정하기 위하여 $p_0, p_1, p_2, {\sigma '}_v$ 그리고 초기 간극수압을 바탕으로 인공신경망 모델을 개발하였다. 인공신경망 모델은 오차 역전파 알고리즘을 적용하였으며 국내 연약지반에서 수행된 DMT 시험 자료를 이용하여 훈련하였다. 인공신경망 모델의 적용성을 판단하기 위하여 훈련에 이용되지 않은 자료로부터 예측된 결과와 기존에 제안된 상관관계식으로부터 얻은 결과를 서로 비교하였다.

국내 연약지반의 신뢰성있는 비배수 전단강도 추정을 위한 flat DMT와 인공신경망 이론의 적용 (Application of flat DMT and ANN for reliable estimation of undrained shear strength of Korean soft clay)

  • 변위용;김영상;이승래;정은택
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2004년도 춘계학술발표회
    • /
    • pp.154-161
    • /
    • 2004
  • The flat dilatometer test(DMT) is a geotechnical tool to estimate in-situ properties of various types of ground materials. The undrained shear strength is known to be the most reliable and useful parameter obtained by DMT. However, the existing relationships which were established for other local deposits depend on the regional geotechnical characteristics. In addition, the flat dilatometer test results have been interpreted using three intermediate indicesmaterial index($I_p$), horizontal stres index($K_p$), and dilatometer modulus($E_p$) and the undrained shear strength is estimated only by using the horizontal stress index($K_D$). In this paper, an artificial neural network was developed to evaluate the undrained shear strength by DMT and the ANN, based on the $p_0,\;p_1,\;p_2,\;{\sigma}'_v_0$, and porewater pressure. The ANN which adopts the back-propagation algorithm was trained based on the DMT data obtained from Korean soft clay. To investigate the feasibility of ANN model, the prediction results obtained from data which were not used to train the ANN and those obtained from existing relationships were compared.

  • PDF

스트럿-타일 모델을 이용한 반복하중을 받는 철근 콘크리트 보의 전단피로손상거동에 관한 연구 (A Study on the Shear Fatigue Damage Behavior of the Reinforced Concrete Beams Subject to Repeated Loading Using the Strut-Tie Model)

  • 오병환;한승환;유영
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 봄 학술발표회 논문집
    • /
    • pp.430-435
    • /
    • 1997
  • This paper represents the investigation of the shear fatigue behavior and damage procedure of reinforced concrete beams subject to repeated loading using the strut-tie model. Damage Index is defined as the ratio of deflection at each cycle to the ultimate deflection of inelastic region. Two types of strut-tie model are designed according to the inclined angles of concrete-struts and the consideration of concrete-ties. In one model, aggregate interlock and resistance of uncracked concrete are regarded as the main sheat resisting mechanism and in the other, stirrup is. The results show that the strut-tie model combined with damage index can describe the shear fatigue behavior of RC beams subject to repeated loading effectively.

  • PDF

Vibration analysis of FG nanobeams based on third-order shear deformation theory under various boundary conditions

  • Jandaghian, Ali Akbar;Rahmani, Omid
    • Steel and Composite Structures
    • /
    • 제25권1호
    • /
    • pp.67-78
    • /
    • 2017
  • In this study, free vibration of functionally graded (FG) micro/nanobeams based on nonlocal third-order shear deformation theory and under different boundary conditions is investigated by applying the differential quadrature method. Third-order shear deformation theory can consider the both small-scale effects and quadratic variation of shear strain and hence shear stress along the FG nanobeam thickness. The governing equations are obtained by using the Hamilton's principle, based on third-order shear deformation beam theory. The differential quadrature (DQ) method is used to discretize the model and attain the natural frequencies and mode shapes. The properties of FG micro/nanobeam are assumed to be chanfged along the thickness direction based on the simple power law distribution. The effects of various parameters such as the nonlocal parameter, gradient index, boundary conditions and mode number on the vibration characteristics of FG micro/nanobeams are discussed in detail.

선형회귀분석에 의한 토층의 전단강도 산정모델 (Estimation model of shear strength of soil layer using linear regression analysis)

  • 이문세;김경수
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.1065-1078
    • /
    • 2009
  • The shear strength has been managed as an important factor in soil mechanics. The shear strength estimation model was developed to evaluate the shear strength using only a few soil properties by the linear regression analysis model which is one of the statistical methods. The shear strength is divided into two part; one is the internal friction angle ($\Phi$) and the other is the cohesion (c). Therefore, some valid soil factors among the results of soil tests are selected through the correlation analysis using SPSS and then the model are formulated by the linear regression analysis based on the relationship between factors. Also, the developed model is compared with the result of direct shear test to prove the rationality of model. As the results of analysis about relationship between soil properties and shear strength, the internal friction angle is highly influenced by the void ratio and the dry unit weight and the cohesion is mainly influenced by the void ratio, the dry unit weight and the plastic index. Meanwhile, the shear strength estimated by the developed model is similar with that of the direct shear test. Therefore, the developed model may be used to estimate the shear strength of soils in the same condition of study area.

  • PDF