1 |
Pei, J., Tian, F. and Thundat, T. (2004), "Glucose biosensor based on the microcantilever", Anal. Chem., 76(2), 292-297.
DOI
|
2 |
Pradhan, S. and Phadikar, J. (2009), "Nonlocal elasticity theory for vibration of nanoplates", J. Sound Vib., 325(1), 206-223.
DOI
|
3 |
Praveen, G. and Reddy, J. (1998), "Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates", Int. J. Solids Struct., 35(33), 4457-4476.
DOI
|
4 |
Rahmani, O. and Jandaghian, A. (2015), "Buckling analysis of functionally graded nanobeams based on a nonlocal third-order shear deformation theory", Appl. Phys. A, 119(3), 1019-1032.
DOI
|
5 |
Rahmani, O. and Noroozi Moghaddam, M.H. (2014), "On the vibrational behavior of piezoelectric nano-beams", Adv. Mater. Res., 829, 790-794.
|
6 |
Rahmani, O. and Pedram, O. (2014), "Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory", Int. J. Eng. Sci., 77, 5570.
|
7 |
Rahmani, O., Asemani, S. and Hosseini, S. (2015), "Study the Buckling of Functionally Graded Nanobeams in Elastic Medium with Surface Effects Based on a Nonlocal Theory", J. Computat. Theor. Nanosci., 12(10), 3162-3170.
DOI
|
8 |
Rahmani, O., Hosseini, S. and Parhizkari, M. (2016a), "Buckling of double functionally-graded nanobeam system under axial load based on nonlocal theory: An analytical approach", Microsyst. Technol., 23(7), 2739-2751.
|
9 |
Rahmani, O., Hosseini, S.A.H. and Hayati, H. (2016b), "Frequency analysis of curved nano-sandwich structure based on a nonlocal model", Modern Phys. Lett. B., 30(10), 1650136.
|
10 |
Rahmani, O., Niaei, A.M., Hosseini, S. and Shojaei, M. (2017a), "In-plane vibration of FG micro/nano-mass sensor based on nonlocal theory under various thermal loading via differential transformation method", Superlattices Microstruct., 101, 23-39.
DOI
|
11 |
Jandaghian, A. and Rahmani, O. (2015), "An Analytical Solution for Free Vibration of Piezoelectric Nanobeams Based on a nonlocal elasticity theory", J. Mech., 32(2), 143-151.
|
12 |
Hosseini, S.A.H. and Rahmani, O. (2016c), "Thermomechanical vibration of curved functionally graded nanobeam based on nonlocal elasticity", J. Thermal Stress., 39(10), 1252-1267.
DOI
|
13 |
Hosseini-Hashemi, S., Zare, M. and Nazemnezhad, R. (2013), "An exact analytical approach for free vibration of Mindlin rectangular nano-plates via nonlocal elasticity", Compos. Struct., 100, 290-299.
DOI
|
14 |
Hung, E.S. and Senturia, S.D. (1999), "Extending the travel range of analog-tuned electrostatic actuators", Microelectromech. Syst. J., 8(4), 497-505.
DOI
|
15 |
Jandaghian, A. and Rahmani, O. (2016b), "Free vibration analysis of magneto-electro-thermo-elastic nanobeams resting on a Pasternak foundation", Smart Mater. Struct., 25(3), 035023.
DOI
|
16 |
Janghorban, M. and Zare, A. (2011), "Free vibration analysis of functionally graded carbon nanotubes with variable thickness by differential quadrature method", Physica E: Low-dimens. Syst. Nanostruct., 43(9), 1602-1604.
DOI
|
17 |
Jia, X., Yang, J., Kitipornchai, S. and Lim, C. (2011), "Forced vibration of electrically actuated FGM micro-switches", Procedia Eng., 14, 280-287.
DOI
|
18 |
Kapuria, S., Bhattacharyya, M. and Kumar, A.N. (2008), "Bending and free vibration response of layered functionally graded beams: A theoretical model and its experimental validation", Compos. Struct., 82(3), 390-402.
DOI
|
19 |
Rahmani, O., Norouzi, S., Golmohammadi, H. and Hosseini, S. (2017b), "Dynamic response of a double single-walled carbon nanotube under a moving nanoparticle based on modified nonlocal elasticity theory considering surface effects", Mech. Adv. Mater. Struct., 1-18.
|
20 |
Jia, X., Yang, J., Kitipornchai, S. and Lim, C.W. (2012), "Pull-in instability and free vibration of electrically actuated poly-SiGe graded micro-beams with a curved ground electrode", Appl. Math. Model., 36(5), 1875-1884.
DOI
|
21 |
Shu, C. (2000), Differential Quadrature and its Application in Engineering, Springer Science & Business Media.
|
22 |
Reddy, J.N. (2002), Energy Principles and Variational Methods in Applied Mechanics, John Wiley & Sons.
|
23 |
Reddy, J. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2), 288-307.
DOI
|
24 |
Refaeinejad, V., Rahmani, O. and Hosseini, S. (2017), "Evaluation of nonlocal higher order shear deformation models for the vibrational analysis of functionally graded nanostructures", Mech. Adv. Mater. Struct., 1-8.
|
25 |
Simsek, M. and Yurtcu, H. (2013), "Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory", Compos. Struct., 97, 378-386.
DOI
|
26 |
Sina, S.A., Navazi, H.M. and Haddadpour, H. (2009), "An analytical method for free vibration analysis of functionally graded beams", Mater. Des., 30(3), 741-747.
DOI
|
27 |
Uymaz, B. (2013), "Forced vibration analysis of functionally graded beams using nonlocal elasticity", Compos. Struct., 105, 227-239.
DOI
|
28 |
Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., Int. J., 54(4), 693-710.
DOI
|
29 |
Ke, L.-L., Wang, Y.-S., Yang, J. and Kitipornchai, S. (2012), "Nonlinear free vibration of size-dependent functionally graded microbeams", Int. J. Eng. Sci., 50(1), 256-267.
DOI
|
30 |
Ke, L.-L. and Wang, Y.-S. (2011), "Size effect on dynamic stability of functionally graded microbeams based on a modified couple stress theory", Compos. Struct., 93(2), 342-350.
DOI
|
31 |
Koizumi, M. (1993), The Concept of FGM, Ceramic Transactions. Functionally Gradient Materials, 34, 3-10.
|
32 |
Koizumi, M. (1997), "FGM activities in Japan", Compos. Part B: Eng., 28(1-2), 1-4.
DOI
|
33 |
Lun, F., Zhang, P., Gao, F. and Jia, H. (2006), "Design and fabrication of micro-optomechanical vibration sensor", Microfab. Technol., 120(1), 61-64.
|
34 |
Mahi, A., Bedia, E.A.A., Tounsi, A. and Mechab, I. (2010), "An analytical method for temperature-dependent free vibration analysis of functionally graded beams with general boundary conditions", Compos. Struct., 92(8), 1877-1887.
DOI
|
35 |
Miller, R.E. and Shenoy, V.B. (2000), "Size-dependent elastic properties of nanosized structural elements", Nanotechnology. 11(3), p. 139.
DOI
|
36 |
Nguyen, N.-T., Kim, N.-I. and Lee, J. (2014), "Analytical solutions for bending of transversely or axially FG nonlocal beams", Steel Compos. Struct., Int. J., 17(5), 641-665.
DOI
|
37 |
Moghimi Zand, M. and Ahmadian, M. (2009), "Vibrational analysis of electrostatically actuated microstructures considering nonlinear effects", Commun. Nonlinear Sci. Numer. Simul., 14(4), 1664-1678.
DOI
|
38 |
Moser, Y. and Gijs, M.A. (2007), "Miniaturized flexible temperature sensor", Microelectromech. Syst. J., 16(6), 1349-1354.
DOI
|
39 |
Murmu, T. and Pradhan, S. (2009), "Vibration analysis of nanoplates under uniaxial prestressed conditions via nonlocal elasticity", J. Appl. Phys., 106(10), 104301.
DOI
|
40 |
Alshorbagy, A.E., Eltaher, M.A. and Mahmoud, F.F. (2011), "Free vibration characteristics of a functionally graded beam by finite element method", Appl. Math. Model., 35(1), 412-425.
DOI
|
41 |
Asghari, M., Kahrobaiyan, M. and Ahmadian, M. (2010), "A nonlinear Timoshenko beam formulation based on the modified couple stress theory", Int. J. Eng. Sci., 48(12), 1749-1761.
DOI
|
42 |
Aydogdu, M. (2009), "A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration", Physica E: Low-dimens. Syst. Nanostruct., 41(9), 1651-1655.
DOI
|
43 |
Batra, R., Porfiri, M. and Spinello, D. (2008), "Vibrations of narrow microbeams predeformed by an electric field", J. Sound Vib., 309(3), 600-612.
DOI
|
44 |
Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer.
|
45 |
Belkorissat, I., Houari, M.S.A., Tounsi, A., Bedia, E.A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., Int. J., 18(4), 1063-1081.
DOI
|
46 |
Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., Int. J., 20(2), 227249.
|
47 |
Carbonari, R.C., Silva, E.C. and Paulino, G.H. (2009), "Multi-actuated functionally graded piezoelectric micro-tools design: A multiphysics topology optimization approach", Int. J. Methods Eng., 77(3), 301-336.
DOI
|
48 |
Eltaher, M., Emam, S.A. and Mahmoud, F. (2012), "Free vibration analysis of functionally graded size-dependent nanobeams", Appl. Math. Computat., 218(14), 7406-7420.
DOI
|
49 |
Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710.
DOI
|
50 |
Eringen, A.C. (2006), "Nonlocal continuum mechanics based on distributions", Int. J. Eng. Sci., 44(3), 141-147.
DOI
|
51 |
Eringen, A.C. and Edelen, D. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248.
DOI
|
52 |
Hosseini, S.A.H. and Rahmani, O. (2016a), "Exact solution for axial and transverse dynamic response of functionally graded nanobeam under moving constant load based on nonlocal elasticity theory", Meccanica, 52(6), 1441-1457.
|
53 |
Hosseini, S. and Rahmani, O. (2016b), "Surface effects on buckling of double nanobeam system based on nonlocal Timoshenko model", Int. J. Struct. Stabil. Dyn., 16(10), 1550077.
DOI
|