Browse > Article
http://dx.doi.org/10.4333/KPS.2007.37.3.137

Rheological Behavior of Semi-Solid Ointment Base (Vaseline) in Steady Shear Flow Fields  

Song, Ki-Won (School of Chemical Engineering, Pusan National University)
Kim, Yoon-Jeong (College of Pharmacy, Pusan National University)
Lee, Chi-Ho (College of Pharmacy, Pusan National University)
Publication Information
Journal of Pharmaceutical Investigation / v.37, no.3, 2007 , pp. 137-148 More about this Journal
Abstract
Using a strain-controlled rheometer [Rheometrics Dynamic Analyzer (RDA II)], the steady shear flow properties of a semi-solid ointment base (vaseline) have been measured over a wide range of shear rates at temperature range of $25{\sim}60^{\circ}C$. In this article, the steady shear flow properties (shear stress, steady shear viscosity and yield stress) were reported from the experimentally obtained data and the effects of shear rate as well as temperature on these properties were discussed in detail. In addition, several inelastic-viscoplastic flow models including a yield stress parameter were employed to make a quantitative evaluation of the steady shear flow behavior, and then the applicability of these models was examined by calculating the various material parameters (yield stress, consistency index and flow behavior index). Main findings obtained from this study can be summarized as follows : (1) At temperature range lower than $40^{\circ}C$, vaseline is regarded as a viscoplastic material having a finite magnitude of yield stress and its flow behavior beyond a yield stress shows a shear-thinning (or pseudo-plastic) feature, indicating a decrease in steady shear viscosity as an increase in shear rate. At this temperature range, the flow curve of vaseline has two inflection points and the first inflection point occurring at relatively lower shear rate corresponds to a static yield stress. The static yield stress of vaseline is decreased with increasing temperature and takes place at a lower shear rate, due to a progressive breakdown of three dimensional network structure. (2) At temperature range higher than $45^{\circ}C$, vaseline becomes a viscous liquid with no yield stress and its flow character exhibits a Newtonian behavior, demonstrating a constant steady shear viscosity regardless of an increase in shear rate. With increasing temperature, vaseline begins to show a Newtonian behavior at a lower shear rate range, indicating that the microcrystalline structure is completely destroyed due to a synergic effect of high temperature and shear deformation. (3) Over a whole range of temperatures tested, the Herschel-Bulkley, Mizrahi-Berk, and Heinz-Casson models are all applicable and have an almostly equivalent ability to quantitatively describe the steady shear flow behavior of vaseline, whereas the Bingham, Casson,and Vocadlo models do not give a good ability.
Keywords
Semi-solid ointment base (vaseline); Rheological behavior; Steady shear flow properties; Yield stress; Steady shear viscosity; Viscoplastic flow models;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 G. W. Radebaugh and A. P. Simonelli, Relationship between powder surface characteristics and viscoelastic properties of powder-filled semisolids, J. Pharm. Sci., 74, 3-10 (1985)   DOI
2 V. S. Rudraraju and C. M. Wyandt, Rheology of microcrystalline cellulose and sodium carboxymethyl cellulose hydrogels using a controlled stress rheometer (part II), Int. J. Pharm., 292, 63-73 (2005)   DOI   ScienceOn
3 S. S. Davis, Viscoelastic properties of pharmaceutical semisolids IV:Destructive oscillatory testing, J. Pharm. Sci., 60, 1356-1360 (1971)   DOI
4 G. M. Eccleston, B. W. Barry and S. S. Davis, Correlation of viscoelastic functions for pharmaceutical semisolids: Comparison of creep and oscillatory tests for oil-in-water creams stabilized by mixed emulsifiers, J. Pharm. Sci., 62, 1954-1961 (1973)   DOI
5 G. W. Radebaugh and A. P. Simonelli, Phenomenological viscoelasticity of a heterogeneous pharmaceutical semisolid, J. Pharm. Sci., 72, 415-422 (1983)   DOI
6 P. Herh, J. Tkachuk, S. Wu, M. Bernzen and B. Rudolph, The rheology of pharmaceutical and cosmetic semisolids, Amer. Lab., July, 12-14 (1998)
7 J. H. Kim, K. W. Song, J. O. Lee and C. H. Lee, Studies on the flow properties of semi-solid dosage forms (I): Steady shear flow behavior of toothpastes, J. Korean Pharm. Sci., 25, 213-221 (1995)   과학기술학회마을
8 J. H. Kim, K. W. Song, G. S. Chang, J. O. Lee and C. H. Lee, Studies on the flow properties of semi-solid dosage forms (II) :Temperature-dependent flow behavior of vaseline, J. Pharm. Soc. Korea, 41, 38-47 (1997)
9 G. M. Eccleston, Structure and rheology of cetomacrogol cream: The influence of alcohol chain length and homologue composition, J. Pharm. Pharmacol., 29, 157-162 (1977)   DOI
10 G. W. Radebaugh and A. P. Simonelli, Temperature-frequency equivalence of the viscoelastic properties of anhydrous lanolin USP, J. Pharm. Sci., 72, 422-425 (1983)   DOI
11 S. Ishikawa and M. Kobayashi, Effect of the powder addition to carboxyvinyl polymer hydrogel on viscoelasticity, Chem. Pharm. Bull., 40, 1897-1901 (1992)   DOI
12 S. Ishikawa, M. Kobayashi and M. Samejima, Powder-filled semisolids : Influence of powder addition to vaseline on the rheological properties, Chem. Pharm. Bull., 37, 1355-1361 (1989)   DOI
13 S. Ishikawa and M. Kobayashi, Influence of powder addition to macrogol ointment Japanese pharmacopeia on the rheological properties, Chem. Pharm. Bull., 38, 2814-2820, (1990)   DOI
14 S. Ishikawa, M. Kobayashi and M. Samejima, Evaluation of the rheological properties of various kinds of carboxyvinyl polymer gels, Chem. Pharm. Bull., 36, 2118-2127 (1988)   DOI   ScienceOn
15 L. Bromberg, M. Temchenko, V. Alakhov and T.A. Hatton, Bioadhesive properties and rheology of polyether-modified poly(acrylic acid) hydrogels, Int. J. Pharm., 282, 45-60 (2004)   DOI   ScienceOn
16 G. Bonacucina, S. Martelli and G. F. Palmieri, Rheological, mucoadhesive and release properties of carbopol gels in hydrophilic cosolvents, Int. J. Pharm., 282, 115-130 (2004)   DOI   ScienceOn
17 V. S. Rudraraju and C. M. Wyandt, Rheological characterization of microcrystalline cellulose/sodium-carboxymethyl cellulose hydrogels using a controlled stress rheometer (part I), Int. J. Pharm., 292, 53-61 (2005)   DOI   ScienceOn
18 C. Viseras, G. H. Meeten and A. Lopez-Galindo, Pharmaceutical grade phyllosilicate dispersions : The influence of shear history on floc structure, Int. J. Pharm., 182, 7-20, (1999)   DOI   ScienceOn
19 K. W. Song and G. S. Chang, Nonlinear viscoelastic behavior of concentrated polyisobutylene solutions in large amplitude oscillatory shear deformation, Korean J. Rheol., 10, 173-183 (1998)
20 M. Kobayashi, S. Ishikawa and M. Samejima, Application of nonlinear viscoelastic analysis by the oscillation method to some pharmaceutical ointments in the Japanese pharmacopeia, Chem. Pharm. Bull., 30, 4468-4478 (1982)   DOI   ScienceOn
21 H. Y. Kuk, G. S. Chang and K. W. Song, Large amplitude oscillatory shear flow behavior of concentrated xanthan gum solutions :Experimental investigation and Fourier transform analysis, Theor. Appl. Rheol., 10(1), 95-99 (2006)
22 D. Q. M. Craig and F. A. Johnson, Pharmaceutical applications of dynamic mechanical thermal analysis, Thermochim. Acta, 248, 97-115 (1995)   DOI   ScienceOn
23 K. S. Anseth, C. N. Bowman and L. Brannon-Peppas, Mechanical properties of hydrogels and their experimetal determination, Biomaterials, 17, 1647-1657 (1996)   DOI   ScienceOn
24 D. S. Jones, Dynamic mechanical analysis of polymeric systems of pharmaceutical and biomedical significance, Int. J. Pharm., 179, 167-178 (1999)   DOI   ScienceOn
25 G. S. Chang and K. W. Song, Large amplitude oscillatory shear flow behavior of viscoelastic liquids :Fourier transform analysis, Theor. Appl. Rheol., 4(1), 62-65 (2000)
26 B. W. Barry and M. C. Meyer, Sensory assessment of spreadability of hydrophilic topical preparations, J. Pharm. Sci., 62, 1349-1354 (1973)   DOI
27 B. W. Barry, Continuous shear viscoelastic and spreading properties of a new topical vehicle, FAPG base, J. Pharm. Pharmacol., 25, 131-137 (1973)   DOI
28 K. W. Song, T. H. Kim, G. S. Chang, S. K. An, J. O. Lee and C. H. Lee, Steady shear flow properties of aqueous poly (ethylene oxide) solutions, J. Korean Phar. Sci., 29, 193-203 (1999)
29 B. W. Barry, Advances in Pharmaceutical Sciences, Vol. 4, H.S. Bean, A.H. Beckett and J.E. Carless Eds, Academic Press, New York, pp. 1-72 (1974)
30 K. W. Song, Y. S. Kim and G. S. Chang, Rheology of concentrated xanthan gum solutions:Steady shear flow behavior, Fibers and Polymers, 7, 129-138 (2006)   과학기술학회마을   DOI   ScienceOn
31 H. A. Barnes and K. Walters, The yield stress myth?, Rheol. Acta, 24, 323-326 (1986)   DOI
32 J. S. Hartnett and R. Y. Z. Hu, The yield stress :An engineering reality, J. Rheol., 33, 671-679 (1989)   DOI   ScienceOn
33 D. Hadjistamov, The yield stress :A new point of view, Appl. Rheol., 13, 209-211 (2003)
34 H. Zhu, Y. D. Kim and D. De Kee, Non-Newtonian fluids with a yield stress, J. Non-Newt. Fluid Mech., 129, 177-181, (2005)   DOI   ScienceOn
35 E. C. Bingham, Fluidity and Plasticity, McGraw-Hill, New York, pp. 215-218 (1922)
36 N. Casson, A flow equation for pigment-oil suspensions of the printing ink type, in Rheology of Disperse Systems, C.C. Mill Ed., Pergamon Press, London, pp. 84 (1959)
37 G. B. Thurston and A. Martin, Rheology of pharmaceutical system : Oscillatory and steady shear of non-Newtonian viscoelastic liqiuds, J. Pharm. Sci., 67, 1499-1506 (1978)   DOI
38 J. Ceulemans, L. V. Santvliet and A. Ludwig, Evaluation of continuous shear and creep rheometry in the physical characterisation of ointmets, Int. J. Pharm., 176, 187-202 (1999)   DOI   ScienceOn
39 G. S. Chang and K. W. Song, Large amplitude oscillatory shear flow behavior of viscoelastic liquids : Application of a separable BKZ model (Wagner constitutive equation), Theor. Appl. Rheol., 4(2), 3-6 (2000)
40 H. A. Barnes, The yield stress:A review of '${\pi}\;{\alpha}\;{\nu}\;{\tau}\;{\alpha}\;{\rho}\;{\varepsilon}\;{\iota}$' - Everything flows?, J. Non-Newt. Fluid Mech., 81, 133-178 (1999)   DOI   ScienceOn
41 G. W. Radebaugh and A. P. Simonelli, Application of dynamic mechanical testing to characterize the viscoelastic properties of powder-filled semisolids, J. Pharm. Sci., 73, 590-594 (1984)   DOI
42 J. R. Stokes and J. H. Telford, Measuring the yield behavior of structured fluids, J. Non-Newt. Fluid Mech., 124, 137-146, (2004)   DOI   ScienceOn
43 B. W. Barry and A. J. Grace, Sensory testing of spreadability: Investigation of rheological conditions operative during application of topical preparations, J. Pharm. Sci., 61, 335-341 (1972)   DOI
44 B. Idson, Percutaneous absorption, J. Pharm. Sci., 64, 901-924 (1975)   DOI
45 G. S. Chang and K. W. Song, Large amplitude oscillatory shear flow behavior of viscoelastic liquids:Application of a Doi-Edwards constitutive equation, Theor. Appl. Rheol., 5(1), 25-28 (2001)
46 J. C. Boylan, Rheological study of selected pharmaceutical semisolids, J. Pharm. Sci., 55, 710-715 (1966)   DOI
47 R. C. C. Fu and D. M. Lidgate, Characterization of the shear sensitivity property of petrolatum, J. Pharm. Sci., 74, 290-294 (1985)   DOI
48 B. W. Barry and A. J. Grace, Structural, rheological and textural properties of soft paraffins, J. Texture Studies, 2, 259-279 (1971)   DOI
49 L. E. Pena, B. L. Lee and J. F. Stearns, Structural rheology of a model ointment, Pharm. Res., 11, 875-881 (1994)   DOI
50 J. J. Vocadlo and M. E. Charles, Characterization and laminar flow of fluid-like viscoplastic substances, Can. J. Chem. Eng., 51, 116-121 (1973)   DOI
51 M. L. De Martine and E. L. Cussler, Predicting subjective spreadability, viscosity and stickiness, J. Pharm. Sci., 64, 976-982 (1975)   DOI
52 M. Dervisoglu and J. L. Kokini, Steady shear rheology and fluid mechanics of four semi-solid foods, J. Food Sci., 51, 541-546, 625 (1986)   DOI
53 M. D. Planas, F. G. Rodriguez, R. B. Maximinno and J. V. H. Dominguez, Thixotropic behavior of a microcrystalline cellulose-sodium carboxymethyl cellulose gel, J. Pharm. Sci., 77, 799-801 (1988)   DOI
54 B. F. Birdwell and F. W. Jessen, Crystallization of petroleum waxes, Nature, 209, 366-368 (1966)   DOI
55 W. H. Herschel and R. Bulkley, Measurement of consistency as applied to rubber-benzene solutions, Proc. Amer, Soc. Test. Mat., 26(II), 621-633 (1926)
56 S. Mizrahi and Z. Berk, Flow behavior of concentrated orange juice:Mathematical treatment, J. Texture Studies, 3, 69-79 (1972)   DOI
57 W. Heinz, The Casson flow equation:Its validity for suspension of paints, Material Prufung, 1, 311-316 (1959)
58 R. Y. Ofoli, R. G. Morgan and J. F. Steffe, A generalized rheological model for inelastic fluid foods, J. Texture Studies, 18, 213-230 (1987)   DOI
59 K. W. Song and G. S. Chang, Steady shear flow and dynamic viscoelastic properties of semi-solid food materials, Korean J. Rheol., 11, 143-152 (1999)