• 제목/요약/키워드: shape function

검색결과 2,563건 처리시간 0.031초

Convexity preserving piecewise rational interpolation for planar curves

  • Sarfraz, Muhammad
    • 대한수학회보
    • /
    • 제29권2호
    • /
    • pp.193-200
    • /
    • 1992
  • This paper uses a piecewise ratonal cubic interpolant to solve the problem of shape preserving interpolation for plane curves; scalar curves are also considered as a special case. The results derived here are actually the extensions of the convexity preserving results of Delbourgo and Gregory [Delbourgo and Gregory'85] who developed a $C^{1}$ shape preserving interpolation scheme for scalar curves using the same piecewise rational function. They derived the ocnstraints, on the shape parameters occuring in the rational function under discussion, to make the interpolant preserve the convex shape of the data. This paper begins with some preliminaries about the rational cubic interpolant. The constraints consistent with convex data, are derived in Sections 3. These constraints are dependent on the tangent vectors. The description of the tangent vectors, which are consistent and dependent on the given data, is made in Section 4. the convexity preserving results are explained with examples in Section 5.

  • PDF

고차 등매개요소에서 내부절점의 위치와 해의 안정성 연구 (A study on the solution stability by the position of internal nodes in hihger order isoparametric elements)

  • 이준희;임장근
    • 대한기계학회논문집A
    • /
    • 제21권12호
    • /
    • pp.1973-1983
    • /
    • 1997
  • Higher order isoparametric elements are usually used in the finite element analysis because they can represent easily the geometric shape of a complex structure ad can improve the solution quality. When these elements are used, the position of internal nodes affects greatly on the solution accuracy. Decreasing of the accuracy related to the position of internal nodes is due to non-conformal mapping often results in an unstable Jacobian value. This paper, in order to remove this difficulty, suggests a modified shape function which can establish conformal mapping between two coordinate systems. Numerical experiments with the proposed shape function show that a stable solution can be obtained without respect to the position of internal nodes, and offer convenience that one can take arbitrarily the position of internal nodes considering only the geometric shape of element boundaries.

UBET Analysis of the Combined Extrusion Using Shape Function

  • Bae, Won-Byong;Kim, Young-Ho-;Kim, Jae-Cheol-
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.205-209
    • /
    • 1994
  • The main purpose of this study is constructing new velocity fields on the base of shape function used in finite element method and showing the possibility of application it to metal forming processes. Utilizing the 8-node quadratic rectangular element, we expressed the velocity within the deformation region by interpolating the velocity of each nodal points. And the upper-bound formulation from this velocity fields was derived. In order to confirm the validity of this method we applied it to axisymmetic combined extrusion problem. the results of load show that this method is on better agreement with experiment than the conventional UBET, and also the flow pattern and profile of extruded part are reasonable.

  • PDF

고차 형상함수를 이용한 가스 미케니컬 페이스 시일의 윤활해석 (A Lubrication Analysis of Gas Mechanical Face Seals using a High-Order Shape Function)

  • 이안성;양재훈;최동훈
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2001년도 제34회 추계학술대회 개최
    • /
    • pp.204-211
    • /
    • 2001
  • For the treatment of high compressibility number in the Reynolds equation, a new class of exponential high-order shape functions has been recently introduced in the literatures. In this paper a FE lubrication analysis method of high speed gas mechanical face seals is developed, implementing these shape functions. Their validity and usefulness are presented using 1-D gas bearing models. And a validation of developed 2-D analysis code is shown with a gas flat and spiral groove face seal models.

  • PDF

회전하는 보의 유한요소해석을 위한 유리형상함수의 확장 (Extension of Rational Interpolation Functions for FE Analysis of Rotating Beams)

  • 김용우;정재호
    • 한국소음진동공학회논문집
    • /
    • 제19권6호
    • /
    • pp.591-598
    • /
    • 2009
  • Starting from the rotating beam finite element in which the interpolating shape functions satisfy the governing static homogeneous differential equation of Euler-Bernoulli rotating beams, we derived new shape functions that satisfy the governing differential equation which contains the terms of hub radius and setting angle. The shape functions are rational functions which depend on hub radius, setting angle, rotational speed and element position. Numerical results for uniform and tapered cantilever beams with and without hub radius and setting angle are compared with the available results. It is shown that the present element offers an accurate method for solving the free vibration problems of rotating beams.

가우시안 프로세스 회귀분석을 이용한 영상초점으로부터의 3차원 형상 재구성 (3D Shape Recovery from Image Focus using Gaussian Process Regression)

  • 무하마드 타릭 마흐무드;최영규
    • 반도체디스플레이기술학회지
    • /
    • 제11권3호
    • /
    • pp.19-25
    • /
    • 2012
  • The accuracy of Shape From Focus (SFF) technique depends on the quality of the focus measurements which are computed through a focus measure operator. In this paper, we introduce a new approach to estimate 3D shape of an object based on Gaussian process regression. First, initial depth is estimated by applying a conventional focus measure on image sequence and maximizing it in the optical direction. In second step, input feature vectors consisting of eginvalues are computed from 3D neighborhood around the initial depth. Finally, by utilizing these features, a latent function is developed through Gaussian process regression to estimate accurate depth. The proposed approach takes advantages of the multivariate statistical features and covariance function. The proposed method is tested by using image sequences of various objects. Experimental results demonstrate the efficacy of the proposed scheme.

제품개발 초기단계의 개념적 공정설계 지원을 위한 기계부품의 외형형상 합성에 관한 연구 (A Study on Mechanical Part Configuration Shape Synthesis for Supporting Conceptual Process Planning in the Early Design Stage)

  • 임진승;김용세;에릭왕
    • 한국정밀공학회지
    • /
    • 제21권11호
    • /
    • pp.140-148
    • /
    • 2004
  • Tight integration of product design and process planning in the early design stage would make bigger impact as wider spectrum of design and manufacturing alternatives can be pursued and evaluated. Thus the development of systematic computer-based supporting for this integration if desirable. For this integration and process planning in the early design stage, the systematic method to synthesize shape of part from functional requirements is crucial. This research presents the methods of functional decomposition from overall function of product and synthesizing shape of part based on functional relations extracted from functional decomposition using planetary gear transmission system as an example.

p-수렴 경계요소법에 의한 L-형 영역을 갖는 2차원 포텐셜 문제 해석 (Analysis of 2-D Potential Problem with L-shape Domain by p-Convergent Boundary Element Method)

  • 우광성;조준형
    • 한국전산구조공학회논문집
    • /
    • 제22권1호
    • /
    • pp.117-124
    • /
    • 2009
  • 2차원 포텐셜 문제를 해석하기 위해 고차의 르장드르 형상함수에 기초를 둔 p-수렴 경계요소법이 제안되었다. p-수렴 경계요소법은 종래의 경계요소법에서 사용되는 형상함수와 성질이 다른 르장드르 다항식을 형상함수로 사용한다. p-수렴 유한요소법과 마찬가지로 고차의 형상함수에 따른 절점의 위치가 경계상에서 정해지지 않는다. 따라서 형상함수가 증가함에 따라 선형방정식을 구성하기 위한 수단으로 선점법을 이용하였다. p-수렴 경계요소법에서 선점법은 비대칭 계층적 선점법과 대칭 비계층적 선점법을 선택하여 수치해석을 수행하였다. 선택점들은 형상함수가 증가함에 따라 증가하는 성질을 나타내며 계층적 또는 대칭적으로 선택될 수 있다. p-수렴 경계요소법에서 나타나는 특이 적분항을 계산하기 위해 special numeric quadrature technique와 semi-analytical integration technique를 사용하였다. 사각모서리부에서 특이성을 가지는 L-형 영역문제를 해석한 결과 적은 수의 자유도에서 기존문헌의 결과와 차이가 거의 없는 정도인 $10^{-2}%$단위 이하의 정확도를 보여주었다. 또한 같은 조건에서는 대칭형 선점의 위치를 이용해 계산한 값이 가장 높은 정확도를 보여주었다.

DOE 활용 추력리플성분 저감을 위한 PMLSM 고정자 형상 최적화 (Shape Optimization of PMLSM Stator for Reduce Thrust Ripple Components Using DOE)

  • 권준환;김재경;전의식
    • 반도체디스플레이기술학회지
    • /
    • 제20권4호
    • /
    • pp.38-43
    • /
    • 2021
  • Permanent magnet linear synchronous motor (PMLSM) is suitable for use in cleanroom environments and have advantages such as high speed, high thrust, and high precision. If the stators are arranged in the entire moving path of the mover, there is a problem in that the installation cost increases. To solve this problem, discontinuous armature arrangement PMLSM has been proposed. In this case, the mover receives a greater detent force in the section where the stator is not arranged. When a large detent force occurs, it appears as a ripple component of the thrust during PMLSM operation. If the shape of the stator is changed to reduce the detent force, the characteristics of the back EMF are changed. Therefore, in this paper, the detent force and the harmonic components of back EMF were reduced through multi-purpose shape optimization. To this end, the FEA model was constructed and main effect analysis was performed on the major shape variables affecting each objective function. Then, the optimal shape that minimizes the objective function was derived through the response surface analysis method.

Classification of algae in watersheds using elastic shape

  • Tae-Young Heo;Jaehoon Kim;Min Ho Cho
    • Communications for Statistical Applications and Methods
    • /
    • 제31권3호
    • /
    • pp.309-322
    • /
    • 2024
  • Identifying algae in water is important for managing algal blooms which have great impact on drinking water supply systems. There have been various microscopic approaches developed for algae classification. Many of them are based on the morphological features of algae. However, there have seldom been mathematical frameworks for comparing the shape of algae, represented as a planar continuous curve obtained from an image. In this work, we describe a recent framework for computing shape distance between two different algae based on the elastic metric and a novel functional representation called the square root velocity function (SRVF). We further introduce statistical procedures for multiple shapes of algae including computing the sample mean, the sample covariance, and performing the principal component analysis (PCA). Based on the shape distance, we classify six algal species in watersheds experiencing algal blooms, including three cyanobacteria (Microcystis, Oscillatoria, and Anabaena), two diatoms (Fragilaria and Synedra), and one green algae (Pediastrum). We provide and compare the classification performance of various distance-based and model-based methods. We additionally compare elastic shape distance to non-elastic distance using the nearest neighbor classifiers.