• Title/Summary/Keyword: shape factors

Search Result 2,328, Processing Time 0.038 seconds

Optimal Design of Interior Permanent Magnet Synchronous Machines Consideration of Magnet BH Characteristic with Different Rotor Type using Response Surface Methodology (반응표면분석법을 이용한 영구자석의 형상 및 특성에 따른 매입형 영구자석 동기기의 최적 설계)

  • Im, Young-Hun;Jang, Seok-Myoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.8
    • /
    • pp.1080-1089
    • /
    • 2013
  • Interior Permanent Magnet Synchronous Machines (IPMSMs) with rare earth magnet are widely used in electric vehicles and hybrid electric vehicles. IPMSMs having high efficiency, high torque, and a wide speed range are employed in propulsion system. And the rotor in an IPMSM is generally made of a rare earth magnet to achieve a large energy product and high torque. This paper discusses issues regarding design and performance of IPMSMs using different factors of BH magnetic characteristic. It is necessary to choose factors of magnetic material according to permanent magnet shape in rotor for high performance. Response Surface Methodology (RSM) is selected to obtain factors of magnetic material according to variety of rotor shapes. The RSM is a collection of mathematical and statistical techniques useful for the analysis of problems in which a response of interest in influenced by several variables and the objective is to optimize response. Therefore, it is necessary to analyze the torque characteristics of an IPMSM having magnet BH hysteresis curve with different rotor shape. Factors of residual flux density (Br) factor and intrinsic coercive force (Hc) are important parameters in RSM for rotor shape. The rotor shapes for IPMSMs having magnet BH characteristic were investigated using the RSM, and three shapes were analyzed in detail using FEA. The results lead to design consequence of IPMSMs in the various rare earth magnet materials.

Characteristics and Classification of Armscye Circumference using 3D Scan Data (3차원 인체형상자료를 이용한 겨드랑둘레선의 형태특성 및 유형)

  • Choi, Kueng-Mi;Park, Sun-Mi;Nam, Yun-Ja;Jun, Jung-Ill;Ryu, Young-Sil
    • Fashion & Textile Research Journal
    • /
    • v.12 no.1
    • /
    • pp.80-85
    • /
    • 2010
  • The purpose of this study was to examine the characteristics of armscye circumference which will be used to develop total contents for the apparel industry. The subjects of this study were 16- to 49-year-old women whose 3D body shape data were analyzed. 72 length and length-ratio measurements were taken to each subject' armscye circumference. The used analysis methods are descriptive statistics, principal component analysis, and cluster analysis. The results are follows; 1. Considering the Length of armscye circumference, the result of principal component analysis were extracted 3 factors and those factors comprised 95% of total variance. As the result of the cluster analysis of factor scores, subjects were classified into 4 cluster by their size characteristic. 2. Considering the length-ratio of armscye circumference, the result of principal component analysis were extracted 5 factors and those factors comprised 96.45% of total variance. As the result of the cluster analysis of factor scores, subjects were classified into 5 cluster by their shape characteristic. So that, this research could be useful to manufacture garment which reflected 3D body figure and improved fitting.

Effective Process Parameters on Shape Dimensional Accuracy in Incremental Sheet Metal Forming (점진성형에서 형상 정밀도에 영향을 미치는 공정 변수)

  • Kang, Jae-Gwan;Jung, Jong-Yun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.4
    • /
    • pp.177-183
    • /
    • 2015
  • Incremental sheet metal forming is a manufacturing process to produce thin parts using sheet metals by a series of small incremental deformation. The process rarely needs dedicated dies and molds, thus, preparation time for the process is relatively short as to be compared to conventional metal forming. Spring back in sheet metal working is very common, which causes critical errors in dimensions. Incremental sheet metal forming is not fully investigated yet. Hence, incremental sheet metal forming frequently produces inaccurate parts. This paper proposes a method to minimize dimensional errors to improve shape accuracy of products manufactured by incremental forming. This study conducts experiments using an exclusive incremental forming machine and the material for these experiments are sheets of aluminum AL1015. This research defines a process parameter and selects a few factors for the experiments. The parameters employed in this paper are tool feed rate, tool diameter, step depth, material thickness, forming method, dies applied, and tool path method. In addition, their levels for each factor are determined. The plan of the experiments is designed using orthogonal array $L_8$ ($2^7$) which requires minimum number of experiments. Based on the measurements, dimensional errors are collected both on the tool contacted surfaces and on the non-contacted surfaces. The distances between the formed surfaces and the CAD models are scanned and recorded using a commercial software product. These collected data are statistically analyzed and ANOVAs (analysis of variances) are drawn up. From the ANOVAs, this paper concludes that the process parameters of tool diameter, forming depth, and forming method are the significant factors to reduce the errors on the tool contacted surface. On the other hand, the experimental factors of forming method and dies applied are the significant factors on the non-contacted surface. However, the negative forming method always produces better accuracy than the positive forming method.

Adaptive symbiotic organisms search (SOS) algorithm for structural design optimization

  • Tejani, Ghanshyam G.;Savsani, Vimal J.;Patel, Vivek K.
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.3
    • /
    • pp.226-249
    • /
    • 2016
  • The symbiotic organisms search (SOS) algorithm is an effective metaheuristic developed in 2014, which mimics the symbiotic relationship among the living beings, such as mutualism, commensalism, and parasitism, to survive in the ecosystem. In this study, three modified versions of the SOS algorithm are proposed by introducing adaptive benefit factors in the basic SOS algorithm to improve its efficiency. The basic SOS algorithm only considers benefit factors, whereas the proposed variants of the SOS algorithm, consider effective combinations of adaptive benefit factors and benefit factors to study their competence to lay down a good balance between exploration and exploitation of the search space. The proposed algorithms are tested to suit its applications to the engineering structures subjected to dynamic excitation, which may lead to undesirable vibrations. Structure optimization problems become more challenging if the shape and size variables are taken into account along with the frequency. To check the feasibility and effectiveness of the proposed algorithms, six different planar and space trusses are subjected to experimental analysis. The results obtained using the proposed methods are compared with those obtained using other optimization methods well established in the literature. The results reveal that the adaptive SOS algorithm is more reliable and efficient than the basic SOS algorithm and other state-of-the-art algorithms.

Analyzing Adult Male Hand Shape for the Development of Work Gloves (작업용 장갑 개발을 위한 성인 남성 손 형태 분석)

  • Sujoung Cha
    • Journal of Fashion Business
    • /
    • v.27 no.4
    • /
    • pp.21-37
    • /
    • 2023
  • This study aimed to classify the hand types of adult males aged 20 to 69 years using three-dimensional measurement data from the 2020 8th Korean Anthropometric Survey, the latest measurement data from the National Institute of Standards and Technology Size Korea, and explore the characteristics of each type. Through this, I aimed to draw implications for the development of work gloves. The factors that make up an adult male's hand were categorized into hand and finger thickness factors, palm length factors, and finger length factors. Adult male hands were categorized into four types: small, thin hands and long fingers; thick, long fingers; medium, short hands and fingers; and large, thin, short fingers. The analysis showed that the younger the age, the more slender and long the hands and fingers, and as age increased, hands and fingers became shorter and thicker. Implications for the development of work gloves included the need for size segmentation based on the age of the work glove user, changes in the way glove dimensions are set based on hand length and hand circumference, and the need to segment gloves by the type of work. Hand typing in future research should be done according to occupational groups, and glove patterns should be developed for each type of work based on the results of this study.

General Steady-State Shape Factors in Analyzing Slug Test Results to Evaluate In-situ Hydraulic Conductivity of Vertical Cutoff Wall (순간변위시험(slug test)시 연직차수벽의 현장투수계수를 산정하기 위한 형상계수 연구)

  • Lim, Jee-Hee;Lee, Dong-Seop;Nguyen, Thebao;Choi, Hang-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.10
    • /
    • pp.105-116
    • /
    • 2011
  • No analytical solution exists for evaluating in-situ hydraulic conductivity of vertical cutoff walls by analyzing slug test results. Recently, an analytical solution to interpret slug tests has been proposed for a partially penetrated well in an aquifer. However, this analytical solution cannot be directly applied to the cutoff wall because the solution has been developed exclusively for an infinite aquifer instead of a narrow cutoff wall. To consider the cutoff wall boundary conditions, the analytical solution has been modified in this study to take into account the narrow boundaries by introducing the imaginary well theory. Two boundary conditions are considered according to the existence of filter cakes: constant head boundary and no flux boundary. Generalized steady-state shape factors are presented for each geometric condition, which can be used for evaluating the in-situ hydraulic conductivity of cutoff walls. The constant head boundary condition provides higher shape factors and no flux boundary condition provides lower shape factors than the infinite aquifer, which enables to adjust the in-situ hydraulic conductivity of the cutoff wall. The hydraulic conductivities calculated from the analytical solution in this paper give about 1.2~1.7 times higher than those from the Bouwer and Rice method, one of the semi-empirical formulas. Considering the compressibility of the backfill material, the analytical solution developed in this study was proved to correspond to the case of incompressible backfill materials.

The Analysis of Foot Shape of Elementary School Boys (학령기 남아의 발 형태 분석)

  • Seok, Eun-Yeong;Jeon, Eun-Gyeong;Park, Sun-Ji;Gwon, Suk-Hui
    • Journal of the Ergonomics Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.1-12
    • /
    • 2004
  • The purposes of this study were to investigate the relationship between anthropometric data of foot and other body sizes. to categorize the foot shape of elementary school boys and to find out determinant factors related the foot that enable us to deduce the foot shape and size for the design of more comfortable shoes. Subjects of this study were 249 elementary school boys of age ranged from 6 to 11 residing Seoul and lncheon area. Anthropometric sizes were measured with the direct measurement method using Martin scales and the indirect measurement method using digital photos. Pearson's correlation, factor analysis. cluster analysis. analysis of variance, post-hoc test, and cross tabs were performed for statistical analysis of the data by SPSS program. From the investigation on the relationship between foot-related items and body items, most items of foot measure were significantly related to body size items. However, angle of the foot did not related to other body sizes although other height items and mass items of the foot did have relationships with other body sizes. Results of ANOVA indicated there were significant differences in foot-related items except for items of foot angle and all body anthropometric items by subjects' age. This implicates big toe angle, little toe angle and foot ratio factors are required in sizing shoes besides foot length. On the basis of cluster analysis using factor scores. three different foot shapes were categorized. Type 1 was large and wide foot, Type 2 was small and narrow foot with large toe angle. and Type 3 was medium foot with no deformity on big toe. These three groups show significant differences in almost all measurement items. However, Rorher index and foot angle didn't show any significant differences among groups. This implicates the foot shape can be a determinant of shoe size.

The Classification of Men's Foot Shape According to Age (성인 남성의 연령대별 발 형태 분류)

  • Lee, Ji-Eun;Kwon, Young-Ah
    • Fashion & Textile Research Journal
    • /
    • v.10 no.5
    • /
    • pp.644-651
    • /
    • 2008
  • The health of foot is connected with individual's health and affects men's activity. In order to develope comfort socks, both foot size and foot shape must be considered. The purpose of this study was to categorize men's foot shape according to age using men's foot scan data (with 2005 Size Korea). Factor analysis, Cluster analysis, ANOVA, and Duncan's test were performed for statistical analysis of the data by SPSS Win 12.00 program. The results are as follows. 1. Nine factors constituting the men's foot were extracted through factor analysis and those factors comprised 77.7% of total variance. 2. On the basis of the cluster analysis, four different foot shapes were categorized. Cluster 1 was characterized by large in toe and ankle size. Cluster 2 was characterized by short foot length, low foot height, and small foot breadth/girth. Cluster 3 was characterized by large and high in foot height. Cluster 4 was characterized by short in foot length and large in foot breadth/girth. 3. Distribution of four foot shape clusters from 20 to 70 years in age above were categorized. For the 20 to 29 years in age, cluster 2, while for the over 30 years in age cluster 4 or cluster 3 is the most dominant foot type. A foot breadth in the 50 years over is wider size range than that in the below 49 years. The foot figures of elderly men over 60 years were smaller than those of below 60 years.

Electronic Shielding Effectiveness of the Structure with Long-shape Aperture (Long-shape aperture를 갖는 구조물의 Electronic Shielding Effectiveness 연구)

  • Heo, Yu;Kim, Min-Ho;Kim, In-Seok;Baek, Young-Nam
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.810-813
    • /
    • 2003
  • Wide spread using of mobile and handy electronic apparatus is giving rise to a question on the harmfulness of health and causing troubles when electical and electronic equipments are in use. This paper reports on the experimental results obtained by using a pliable and structured specimen that has a long shape aperture, made of stainless steel fibers. Based on the TEM mode transfer structure that was designed and manufactured through HFSS, we measured electromagnetic shielding effectives, where the network analyzer was applied. We could draw a conclusion from this research that the metal fabric showed a good electromagnetic shielding effect, mainly by means of the good reflex loss at the fiber surface. Even though the material itself possesses a good absorption loss. the specimen revealed that structural factors. e.g.. the shape of the aperture. the size of the aperture, etc., can have a more influence on the shielding effect than the components of material have. A special notice is required for modeling and analyzing the electromagnetic characteristics of metal fabrics, because there exists a strong possibility that multiple reflection can happen on the surface of metal fibers. which can presume a model of fiber bundle and fabric structure.

  • PDF

Effect of Shape and Flow Rate on T10 in Clearwell (정수지의 형상과 유입 유량이 T10에 미치는 영향 연구)

  • Shin, Eun-Her;Kim, Sung-Hoon;Park, Hee-Kyung;Ahn, Jae-Chan;Choi, Jae-Ho;Choi, Young-June
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.6
    • /
    • pp.819-826
    • /
    • 2005
  • To guarantee the disinfection ability in clearwell, a value of CT is considered where C[mg/l] is disinfectant residual at the exit of clearwell and T[min] means $T_{10}$, the contact time when 10% of tracer is out of clearwell after introducing the tracer at the inlet. To meet a CT value required, increasing the C value is not recommended because high C value can increase potential of producing disinfection by product like THMs. Increasing the hydraulic efficiency surrogated by $T_{10}$ is thus an option widely recommended. Right now, it is widely adopted estimating $T_{10}$ considering LW ratio only due to the suggestions of previous researches. The authors think however there are other factors to consider including shape, flow rate, configuration of inlet and outlet, and the existence of intra basin. This study is initiated to closely look at the effects of two factor on hydraulic efficiency. The factors are shape and inlet flow velocity, i.e., inflow. For that, computational fluid dynamics (CFD) model is developed and pilot test is also carried out. The results show that at a L/W ratio, disinfection ability is overestimated with larger length in shape and higher inlet flow velocity. This suggests that in determining $T_{10}$, the shapes of clearwell and inlet flow velocity should also be considered as well as L/W ratio.