• Title/Summary/Keyword: shallow-water wave equation

Search Result 77, Processing Time 0.025 seconds

Investigation on the Variation of Ocean Waves passing through Shallow Waters (낮은 수심을 통과하는 해양파의 변화에 대한 연구)

  • Seok, Woochan;Won, Younsang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.1
    • /
    • pp.161-167
    • /
    • 2022
  • Ocean waves passing through the underwater bar at a shallow depth experience a shoaling effect caused by decreasing water depth, a nonlinear interaction therein owing to steepening wave slope, and a wave dispersion effect as the water depth increases again. Because this problem includes many complicated phenomena, it is used as a good example of validating a theoretical development or a CFD method for ocean wave applications. Validation is performed mainly for regular waves by comparing the wave elevation patterns in the time domain with the experimental results. In this study, the spectral evolution of wave spectrum is investigated in the frequency domain when a CFD method such as OpenFOAM is applied for this problem. In particular, the effects of initial phase conditions as well as the nonlinear interaction among harmonic waves are studied.

Estimation of Harbor Responses due to Construction of a New Port in Ulsan Bay

  • Lee, Joong-Woo;Lee, Hoon;Lee, Hak-Seung;Jeon, Min-Su
    • Journal of Navigation and Port Research
    • /
    • v.28 no.7
    • /
    • pp.619-627
    • /
    • 2004
  • Introduction of wave model, considered the effect of shoaling, refraction, diffraction, partial reflection, bottom friction, breaking at the coastal waters of complex bathymetry, is a very important factor for most coastal engineering design and disaster prevention problems. As waves move from deeper waters to shallow coastal waters, the fundamental wave parameters will change and the wave energy is redistributed along wave crests due to the depth variation, the presence of islands, coastal protection structures, irregularities of the enclosing shore boundaries, and other geological features. Moreover, waves undergo severe change inside the surf zone where wave breaking occurs and in the regions where reflected waves from coastline and structural boundaries interact with the incident waves. Therefore, the application of mild-slope equation model in this field would help for understanding of wave transformation mechanism where many other models could not deal with up to now. The purpose of this study is to form a extended mild-slope equation wave model and make comparison and analysis on variation of harbor responses in the vicinities of Ulsan Harbor and Ulsan New Port, etc. due to construction of New Port in Ulsan Bay. We also considered the increase of water depth at the entrance channel by dredging work up to 15 meters depth in order to see the dredging effect. Among several model analyses, the nonlinear and breaking wave conditions are showed the most applicable results. This type of trial might be a milestone for port development in macro scale, where the induced impact analysis in the existing port due to the development could be easily neglected.

Analysis of Generation and Amplification Mechanism of Abnormal Waves Occurred along the West Coast of Korea (서해안 이상파랑의 발생 및 증폭 기구 분석)

  • Yoon, Sung Bum;Shin, Choong Hun;Bae, Jae Seok
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.5
    • /
    • pp.314-326
    • /
    • 2014
  • On 31 March 2007, the abnormal wave occurred along the western coast of Korea. In order to investigate the generation mechanism of abnormal waves and to understand the amplification process of the abnormal waves, the observed data were analyzed and one-dimensional numerical model experiments were performed by using both the linear shallow water equation and the linear Boussinesq equation models. Various types of pressure jump for the abnormal waves previously proposed by other researchers were reviewed. As a result, it was not possible to reproduce the abnormal waves from the previously proposed pressure jumps. In this study, we proposed a new form of pressure jump, and numerical simulations were performed in order to check the validity of the proposed pressure jump. The numerical results showed that the calculated period of abnormal waves and the maximum water elevations agreed reasonably well with those of the observations.

Three-dimensional Numerical Analysis of Dam-break Waves on a Fixed and Movable Bed (고정상 및 이동상 수로에서 댐 붕괴파의 3차원 수치해석)

  • Kim, Dae Geun;Hwang, Gun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4B
    • /
    • pp.333-341
    • /
    • 2011
  • This study analyzed the propagation of dam-break waves in an area directly downstream of a dam by using 3D numerical modeling with RANS as the governing equation. In this area, the flow of the waves has three dimensional characteristics due to the instantaneous dam break. In particular, the dam-break flows are characterized by a highly unsteady and discontinuous flow, a mixture of the sharp flood waves and their reflected waves, a mixture of subcritical and supercritical flow, and propagation in a dry and movable bed. 2D numerical modeling, in which the governing equation is the shallow water equation, was regarded as restricted in terms of dealing with the sharp fluctuation of the water level at the dam-breaking point and water level vibration at the reservoir. However, in this 30 analysis of flood wave propagation due to partial dam breaking and dam-break in channels with $90^{\circ}$ bend, those phenomena were properly simulated. In addition, the flood wave and bed profiles in a movable bed with a flat/upward/downward bed step, which represents channel aggradation or degradation, was also successfully simulated.

Applicability of the Korteweg-de Vries Equation for Description of the Statistics of Freak Waves (최극해파통계분석을 위한 Korteweg-de Vries식의 적용성 검토)

  • Anna Kokorina;Efim Pelinovsky
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.4
    • /
    • pp.308-318
    • /
    • 2002
  • The requirements to the numerical model of wind-generated waves in shallow water are discussed in the framework of the Korteweg-de Vries equation. The weakness of nonlinearity and dispersion required for the Korteweg-de Vries equation applicability is considered for fully developed sea, non-stationary wind waves and swell, including some experimental data. We note for sufficient evaluation of the freak wave statistics it is necessary to consider more than about 10,000 waves in the wave record, and this leads to the limitation of the numerical domain and number of realizations. The numerical modelling of irregular water waves is made to demonstrate the possibility of effective evaluation of the statistical properties of freak waves with heights equal to 2-2.3 significant wave height.

Effects of Depth-varying Compressional Wave Attenuation on Sound Propagation on a Sandy Bottom in Shallow Water (천해 사질 퇴적층에서 종파감쇠계수의 깊이별 변화가 음파손실에 미치는 영향)

  • Na, Young-Nam;Shim, Tae-Bo;Jurng, Moon-Sub;Choi, Jin-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.2E
    • /
    • pp.76-82
    • /
    • 1994
  • The characteristics of bottom sediment may be able to vary within a few meters of depth in shallow water. Since bottom attenuation coefficient as well as sound velocity in the bottom layer is determined by the composition and characteristics of sediment itself, it is reasonable to assume that the bottom attenuation coefficient is accordingly variable with depth. In this study, we use a parabolic equation scheme to examine the effects of depth-varying compressional wave attenuation on acoustic wave propagation in the low frequency ranging from 100 to 805 Hz. The sea floor under consideration is sandy bottom where the water and the sediment depths are 40 meters and 10 meters, respectively. Depending on the assumption that attenuation coefficient is constant or depth-varying, the propagation loss difference is as large as 10dB within 15 km. The predicted propagation loss is very much comparable to the measured one when we employ a depth-varying attenuation coefficient.

  • PDF

A Note on the Modified Mild-Slope Equation (修正 緩傾斜方程式에 대한 小考)

  • Kyung Doug Suh;Woo Sun Park;Chang Hoon Lee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.10 no.2
    • /
    • pp.55-63
    • /
    • 1998
  • Recently the modified mild-slope equation has been developed by several researchers using different approaches, which, compared to the Berkhoff's mild-slope equation, includes additional terms proportional to the square of bottom slope and to the bottom curvature. By examining this equation, it is shown that both terms are equally important in intermediate-depth water, but in shallow water the influence of the bottom curvature term diminishes while that of the bottom slope square term remains significant. In order to examine the importance of these terms in more detail, the modified mild-slope equation and the Berkhoff's mild-slope equation are tested for the problems of wave reflection from a plane slope, a non-plane slope, and periodic ripples. It is shown that, when only the bottom slope is concerned, the mild-slope equation can give accurate results up to a slope of 1 in 1 rather than 1 in 3, which, until now, has been known as the limiting bottom slope for its proper application. It is also shown that the bottom curvature term plays an important role in modeling wave propagation over a bottom topography with relatively mild variation, but, where the bottom slope is not small, the bottom slope square term should also be included for more accurate results.

  • PDF

Numerical Analysis of Nonlinear Effect of Wave on Refraction and Diffraction (파의 굴절 및 회절에 미치는 비선형 효과에 대한 수치해석)

  • 이정규;이종인
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.2 no.1
    • /
    • pp.51-57
    • /
    • 1990
  • Based on second-order Stokes wave and parabolic approximation, a refraction-diffraction model for linear and nonlinear waves is developed. With the assumption that the water depth is slowly varying, the model equation describes the forward scattered wavefield. The parabolic approximation equations account for the combined effects of refraction and diffraction, while the influences of bottom friction, current and wind have been neglected. The model is tested against laboratory experiments for the case of submerged circular shoal, when both refraction and diffraction are equally significant. Based on Boussinesq equations, the parabolic approximation eq. is applied to the propagation of shallow water waves. In the case without currents, the forward diffraction of Cnoidal waves by a straight breakwater is studied numerically. The formation of stem waves along the breakwater and the relation between the stem waves and the incident wave characteristics are discussed. Numerical experiments are carried out using different bottom slopes and different angles of incidence.

  • PDF

Transformation of Irregular Waves in Shallow Water (천해에서 불규칙파의 변이)

  • 유동훈
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.5 no.3
    • /
    • pp.212-220
    • /
    • 1993
  • A numerical model for the transformation of irregular waves in a coastal area is developed, which takes account of shoaling, refraction, diffraction, bottom friction and wave breaking. The governing equations are the usual energy conservation equation and kinematic conservation equations, but to consider the diffraction effects additional terms are included in the usual kinematic conservation or wave number equations. A linear superposition technique is used to represent the spectral formation. and an explicit formula is developed for the estimation of friction factor of irregular waves. A breaking criterion of component waves, which is the modified form of the Kitaigorodskii saturation relation, is employed to restrict the growth of shoaling waves in very shallow waters. The model was applied to a laboratory test and satisfactory agreement was obtained between the computation and measurement.

  • PDF

Analytic Solution to Mild Slope Equation for Transformation of Waves Propagating over an Axi-symmetric Pit (축대칭 함몰지형 위를 진행하는 파의 변형에 관한 완경사 방정식의 해석 해)

  • Jung, Tae-Hwa;Suh, Kyung-Duck
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.4
    • /
    • pp.308-320
    • /
    • 2006
  • An analytic solution to the mild-slope equation is derived for waves propagating over an axi-symmetric pit. The water depth inside the pit varies in proportion to a power of radial distance from the pit center. The governing equation is transformed into ordinary differential equations by using separation of variables, and the coefficients of the equations are transformed into explicit forms by using Hunt's (1979) approximate solution. Finally, by using the Frobenius series, the analytic solution is derived. Due to the feature of Hunt's equation, the present analytic solution is accurate in shallow and deep waters, while it is less accurate in intermediate depth water. The validity of the analytic solution is demonstrated by comparison with numerical solutions. The analytic solution is also used to examine the effects of pit geometry and relative depth on wave transformation.