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A Note on the Modified Mild-Slope Equation
fEIE BRI i3t )5

Kyung Doug Suh*, Woo Sun Park** and Changhoon Lee**
AZE A o g

Abstract[ ] Recently the modified mild-slope equation has been developed by several researchers using
different approaches, which, compared to the Berkhoff's mild-slope equation, includes additional terms
proportional to the square of bottom slope and to the bottom curvature. By examining this equation, it is
shown that both terms are equally important in intermediate-depth water, but in shallow water the influence of
the bottom curvature term diminishes while that of the bottom slope square term remains significant. In order
to examine the importance of these terms in more detail, the modified mild-slope equation and the Berkhoff's
mild-slope equation are tested for the problems of wave reflection from a plane slope, a non-plane slope, and
periodic ripples. It is shown that, when only the bottom slope is concerned, the mild-slope equation can give
accurate results up to a slope of 1 in 1 rather than 1 in 3, which, until now, has been known as the limiting
bottom slope for its proper application. It is also shown that the bottom curvature term plays an important role
in modeling wave propagation over a bottom topography with relatively mild variation, but, where the bottom
slope is not small, the bottom slope square term should also be included for more accurate results.
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1. INTRODUCTION waves in coastal waters. It has not only been used in

its original form of elliptic equation but also provided

The mild-slope equation, since first proposed by the basic governing equation for the development of
Berkhoff (1972), has been widely used for the com- other wave equations such as parabolic equation (Rad-
putation of combined refraction and diffraction of der, 1979) and hyperbolic equations (Copeland, 1985).
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The mild-slope equation assumes that the water depth
varies slowly over a wavelength, that is, | VA }/kh << 1,
where V =horizontal gradient operator, h = water depth,
and k=wavenumber. Booij (1983) showed that the
mild-slope equation gives accurate results up to the
bottom slope of 1 in 3 through the numerical tests for
wave reflection by a plane slope. However, some resear-
chers have reported that the mild-slope equation breaks
down on a rapidly varying topography with local slopes
less than O(1) (Kirby (1986), O'Hare and Davies (1993)
among others).

Recently efforts have been made to improve the mild-
slope equation by including the terms proportional to
the square of bottom slope and to the bottom curvature,
which were neglected in the derivation of the mild-
slope equation. Using the Galerkin-eigenfunction method,
Massel (1993) developed an extended refraction-diffrac-
tion equation which includes these higher-order bottom
effect terms and the evanescent modes as well, although
he did not give any numerical examples for the equation
including the evanescent modes. Chamberlain and Porter
(1995) proposed a modified mild-slope equation which
includes the higher-order bottom effect terms as in the
Massel's equation but not the evanescent modes. On the
other hand, using the Green's formula method and Lag-
rangian formulation, Suh et al. (1997) developed two
equivalent time-dependent wave equations including
these higher-order bottom effect terms, which reduce to
the modified mild-slope equation of Chamberlain and
Porter for a monochromatic wave. Neglecting the evanes-
cent modes, for a monochromatic wave, the equations of
Massel, Chamberlain and Porter, and Suh er al., despite
different approaches of derivation, are all equivalent,
which will be referred to as the modified mild-slope equa-
tion in the present paper as named by Chamberlain and
Porter (1995).

In the present study, first the higher-order bottom
effect terms in the modified mild-slope equation are
examined to compare their relative importance with res-
pect to the relative depth, kh. Second the Booij s (1983)
problem is revisited not only to examine the perfor-

mance of the modified mild-slope equation but also to

re-assess the accuracy of the mild-slope equation. Third,
since the Booij's problem which involves a plane slope
each end of which is connected to a constant-depth
region is not appropriate for exactly evaluating the
effect of the bottom curvature term, these equations are
tested for wave reflection from a non-plane slope on
which both the bottom slope square term and the
bottom curvature term are equally important. Fourth
these equations are applied to the problem of resonant
Bragg reflection of surface waves by periodic ripples to
examine the importance of the higher-order bottom
effect terms on a more realistic bathymetry. For all
these problems, additional numerical tests are made to
examine the relative importance of the bottom slope
square term and the bottom curvature term. Finally major

conclusions follow.
2. MODIFIED MILD-SLOPE EQUATION

The modified mild-slope equation can be written as
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where C and C,=local phase and group velocities,
respectively, &, = deep water wavenumber, and ¢(x, y) =
horizontal spatial variation of the wave potential which
is related to the total velocity potential, ®(x, y, z f), by
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where i=v-1, g=gravitational acceleration, ®=wave
angular frequency, and the vertical coordinate z is mea-
sured vertically upwards from the still water line. The
wavenumber, k, is the solution of the following dis-

persion relationship:
@’ =gk tanh kh 3)

R, and R, are the functions representing the effects of
the square of bottom slope and of the bottom curvature,
respectively, and are given as rather complicated func-
tions in the papers of Massel (1993) and Suh et al

(1997). Simpler expressions for these functions are
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given in Chamberlain and Porter (1995) as follows:
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With R, =R,=0, the modified mild-slope equation (1)
reduces to the Berkhoff's mild-slope equation.

In order to examine the importance of the higher-
order bottom effect terms (i.e., the terms proportional
to the square of bottom slope and to the bottom
curvature), R, and R, are plotted in Fig. 1 in terms of
the relative depth, k4. Both R, and R, approach to zero
as kh— oo, indicating that the effects of both terms
become negligible in deep water, as expected. In sh-
allow water, the effect of bottom curvature is small, but
the effect of the square of bottom slope is still signi-
ficant. Massel (1993) presented a figure similar to Fig. 1
in his paper, showing that R, also approaches to zero as

kh— 0. However, Massel's equation has some errors (see

0.1 T

erratum in p. 348, Coastal Engineering, vol. 20).

The performance of the modified mild-slope equation
will be tested for one-dimensional problems in next
sections. In a one-dimensional problem for waves propa-
gating over straight and parallel bottom contours, the
modified mild-slope equation can be reduced to an
ordinary differential equation. Let us consider a bottom
geometry whose contours are straight in the y-direction
and parallel one another. Furthermore, let us assume that
the water depth varies only in the region of 0<x<C/
(Region 2) and that, for x<0 (Region 1) and x>/
(Region 3), the water depth is constant and equal to i,

and &, respectively. In other words,

h], x<0
hix)={hy(x), 0<x<l )
h3, x>1

Considering plane regular waves traveling with an
angle 0, with respect to the x-axis in Region 1, the

solutions in each region may be assumed as

$1(x, y, z)=[exp(ik x cos )+ K, exp(— ik x cos 6,)]

. coshk(z+h,)
—_ 1 10
expliy coshkh, (19)
_ . coshk,(z +h,)

@(x,y,z)—cp(x)exp(t)(y)W 11)

Py(x,y, 2)=K; exp[iky(x —I)cos B5]exp (i yy)
coshky(z +h5) (12)

coshk i,

where K, and K,=complex reflection and transmission

coefficients, respectively, and

x=k;sinf, =constant (j=1,2,3) (13)

is the wavenumber in the y-direction. Noting that ¢(x, y)
=¢(x)exp(ixy) in Eq. (11), substitution into Eq. (1)

yields the following ordinary differential equation:

—dd—i—f+D(x)‘:ix—?+E(x)q>=0 a4)
where
D)= SR Bt (15)
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where T =tanh (kh).

In order to solve Eq. (14) in Region 2, we need the
boundary conditions at x=0 and x=1/. The potential ¢ (x,
v, z) must satisfy the matching conditions which provide
continuity of pressure and horizontal velocity, normal to

the vertical planes separating the fluid regions, i.e.

o¢, 0

¢ =0 %=a—ﬁ2 (x=0, —h<z<0) (18)
o9,

$=0s %=% (x=1, —h;<z<0) (19)

Substitution of Eqs. (10) to (12) into the preceding

equations gives

2 (0)=1+K, (20)
i(1-K, Yk, cos 6, = di(cO) @1)

(=K (22)
K,k ycos By= dﬁfT(’) 23)

Eliminating K, and K, in the preceding equations, the

boundary conditions at x=0 and x=1 are obtained as

follows:
490) _i12- o)k, cos 8, 4)

dx
dg;El) =ip(l)kycos 0, 25)

The differential equation (14) with the preceding two
boundary conditions can be solved using the finite-
difference method. Using the forward-differencing for
do(0)/dx, backward-differencing for de(l)/dx, and
central-differencing for the derivatives in Eq. (14), the
boundary value problem [Egs. (14), (24) and (25)] may
be approximated by a system of linear equations, AY=

B, where A is a tridiagonal band type matrix, Y is a

column vector, and B is also a column vector. The
subroutines given in the book of Press et al. (1992) can
be used to solve this matrix equation. After solving the
equation, the reflection and transmission coefficients
can be obtained by taking the real part of K, and K,
respectively, in Eqs. (20) and (22).

3. BOO1J'S PROBLEM

By numerical computation for the reflection coef-
ficient of a monochromatic wave normally incident on
a plane slope each end of which is connected to a
constant-depth region, Booij (1983) has shown that the
mild-slope equation gives accurate results up to a slope
of 1 in 3. He compared the solution of the mild-slope
equation with a finite element model solution which
can be considered as an exact solution for linear water
waves. In the Booij's test, the wave period was 2 s,
and the water depths on the upwave and downwave
sides of the slope were 0.6 and 0.2 m, respectively, so
that the difference of the water depth between the two
constant-depth regions was 0.4 m.

In the Booij's (1983) paper, the finite element model
solution is provided only for the slopes steeper than
about 1 in 3, and enough information is not given on
the accuracy of the mild-slope equation for milder
slopes. In the present study, therefore, in order to re-
assess the accuracy of the mild-slope equation especi-
ally for milder slopes, a new finite element model was
constructed for the Booij's problem. An example of the
finite element mesh is shown in Fig. 2 for the slope of
1 in 3. The finite element model is also based on linear
potential wave theory. The near-field solution including
the inclined slope was discretized by 8-noded iso-
parametric elements with quadratic shape functions.
The far-field region was modeled by using infinite
elements whose shape function was derived from the
usage of the progressive and first evanescent wave
components in the analytical boundary series solutions
(Park et al., 1991). The shape function of the infinite
elements satisfies the radiation boundary condition at

infinity. To properly model the behavior of the scat-
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Fig. 2. Finite element mesh for the bottom slope of 1:3 of
the Booij's (1983) problem.

tered waves, the infinite elements on the upwave and
downwave sides were located at a distance of five times
the constant water depth from each end of the slope.

Fig. 3 shows the comparison among the modified
mild-slope equation, the mild-slope equation, and the
finite element model results. The abscissa, b, in the
figure indicates the width of the plane slope in the
direction of wave propagation. First it should be men-
tioned that, for the relatively steep slope range, the
present and the Booij's finite element model results are
almost identical in spite of the usage of different finite
elements and shape functions. In Fig. 3, it is shown
that the modified mild-slope equation gives reflection
coefficients very close to those of the finite element
model, but the mild-slope equation underpredicts the
reflection coefficients for steeper slopes. Even for very
mild slopes, the modified mild-slope equation and the
mild-slope equation show some difference, and the finite
element model results coincide well with the modified

mild-slope equation rather than the mild-slope equation.
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Fig. 3. Reflection coefficient versus horizontal length of a
plane slope; ® =finite element model, — =
modified mild-slope equation, - - — =mild-
slope equation, —- - - =mild-slope equation
plus the bottom curvature term.

It has been well known that the mild-slope equation
gives accurate results up to a slope of 1 in 3, but the
results shown in Fig. 3 indicate that this is not true.
However, it should be noted that the bottom con-
figuration of the Booij's test includes the effects of not
only the bottom slope but also the slope discontinuities
at both ends of the slope. The latter effect may be
represented by the bottom curvature term of the modi-
fied mild-slope equation, which is non-zero only at the
ends of the slope in the Booij's problem (In fact the
bottom curvature at the ends of the slope is infinite, but
in this study it is approximated by central-differencing
dhidy, ie., d’hjdx=[h(x+Ax)-2h(x)+h(x-Ax))/Ax" where
Ax is the grid spacing in the wave propagation direc-
tion). The original mild-slope equation does not take
into account the effect of bottom curvature and for the
bottom slope it includes only the first-order effect
represented by VA. On the other hand, the modified
mild-slope equation includes the second-order bottom
slope effect represented by (VA) as well as the first-
order effect, and in addition it includes the effect of
bottom curvature. Therefore, if we want to assess the
accuracy of these equations in view of only bottom
slope, we have to compare the equation including only
the first-order bottom slope effect with that including
both the first- and second-order effects. If we directly
compare the original and modified mild-slope equations,
it is impossible to compare purely the effect of bottom
slope because the former does not take into account the
effect of bottom curvature while the latter does. There-
fore, for this purpose of comparison it is necessary to
include the effect of bottom curvature in both equations.
Conclusively, if we want to assess the accuracy of the
mild-slope equation merely for the bottom slope, we
have to compare the mild-slope equation including the
bottom curvature term, ie., Eq. (1) with R, =0, with
the modified mild-slope equation.

The result of the mild-slope equation including the
bottom curvature term is shown in Fig. 3 by a dash-
dotted line, which gives somewhat larger reflection
coefficient than the modified mild-slope equation for

steeper slopes but is almost identical with the modified



60 Kyung Doug Suh, Woo Sun Park and Changhoon Lee

mild-slope equation for milder slopes. Noting that the
effect of the bottom curvature is included in all the
results in Fig. 3 except the original mild-slope
equation, it is observed that, when only the bottom
slope is concerned, the mild-slope equation can give
accurate results up to a slope of 1 in 1 rather than 1 in
3. But it should not be overlooked that without the
bottom curvature term, the mild-slope equation could
not give accurate results even for the slopes milder
than 1 in 3, though the reflection coefficient is very
small there.

Recently Porter and Staziker (1995) also showed that
the mild-slope equation gives accurate results up to a
slope of 1 in 1 by testing the mild-slope equation and
the modified mild-slope equation for the Booij's pro-
blem. They showed that these equations do not ensure
continuity of mass flow at locations where the bed
slope is discontinuous and the use of interfacial jump
conditions at such locations improves the accuracy of
these equations. The solution technique of Porter and
Staziker is, however, different from that of the present
study. In the present study, the whole domain including
the slope and the horizontal bed regions was modeled
as one, that is, the model boundaries were taken to be
located not at the locations of slope discontinuity but
on the horizontal bed regions. However Porter and
Staziker divided the domain into three regions (i.e., two
horizontal bed regions and the sloping bed region) and
imposed matching conditions at the vertical planes
separating the regions. Therefore, in the solution of
Porter and Staziker, the effect of bottom curvature is
not included directly in the calculation but it is
included through the use of the interfacial jump condi-
tion. A comparison between Fig. 3 and the corresponding
figure in Porter and Staziker paper (Fig. 2(a)) shows that
the two results are almost identical. This means that the
use of the interfacial jump condition in the Porter and
Staziker solution is equivalent to the inclusion of the

bottom curvature term in our solution.

4. WAVE REFLECTION FROM A
NON-PLANE SLOPE
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Fig. 4. Finite clement mesh for the width of 1.2 m of a
non-plane slope.

The Booij's (1983) problem tested in the previous
section involves a constant slope on the sloping section
and the effect of bottom curvature only at the two
points at the ends of the slope. In order to assess the
simultaneous influence of the steepness and curvature
of slope, we consider now a non-plane slope where
both the steepness and curvature of the slope vary
continuously in space. The water depth on the slope is

given by (see Fig. 4)

hy(x)=05(,+h3)-05(h,—hy)tanhp (x) (26)
where
—aglx_1
p(x)—37r(b 5 ] 27

b is the width of the slope where the water depth varies.
The waves are assumed to propagate normal to the
slope. As in the Booijs problem, the constant depths
on the upwave and downwave sides of the slope are
chosen to be 4,=0.6m and h;=0.2m, respectively,
and the wave period is 2 s. Here, again, the mild-slope
equation and the modified mild-slope equation are
compared with the finite element model. An example
of the finite element mesh is shown in Fig. 4 for the
width of the slope of 1.2 m.

Fig. 5 shows the comparison among the modified
mild-slope equation, the mild-slope equation, and the
finite element model results. Again, it is shown that
the modified mild-slope equation gives reflection
coefficients very close to those of the finite element
model, but the mild-slope equation systematically
underpredicts the reflection coefficients. Compared to

the plane slope (see Fig. 3), the oscillatory behavior of
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Fig. 5. Reflection coefficient versus horizontal length of a
non-plane slope; ® =finite element model, — =

modified mild-slope equation, — ~ — = mild-slope
equation, — - — - — =mild-slope equation plus the
bottoma slope square term, - -- - .-~ =mild-

slope equation plus the bottom curvature term.

the reflection coefficient for the milder slopes dis-
appears, showing monotonous decrease of the refle-
ction coefficient with the decreasing steepness of the
slope.

In order to examine the relative importance of the
bottom slope square term and the bottom curvature
term, additional calculations were made by including
only the slope square term or the bottom curvature
term to the mild-slope equation. Each result is shown
in Fig. 5 by a dash-dot line and dash-dot-dot line,
respectively. As expected, the inclusion of the slope
square term gives some difference from the mild-slope
equation for very steep slopes, while the difference is
minute for milder slopes. Without showing the result, it
is just stated that the same trend has been observed for
the Booij's plane slope. On the other hand, when only
the bottom curvature term is included to the mild-slope
equation, the solution closely follows that of the finite
element model for milder slopes, but the deviation
becomes larger for steeper slopes where the effect of
the bottom slope square term is important as well. As a
result, it can be stated that the mild-slope equation plus
only the bottom curvature term may give sufficiently
accurate results for a bottom topography with relatively
mild variation, but where the bottom slope is not small
the bottom slope square term should also be included

for more accurate results.

5. RESONANT BRAGG REFLECTION BY
RIPPLES

The numerical tests in the previous sections showed
that the effect of bottom curvature is important for
wave propagation on bed with mild slopes of practical
interest. In order to assess the simultaneous influence
of the steepness and curvature of bottom on a more
realistic bathymetry, numerical test is made for wave
reflection by a patch of periodic ripples. When surface
waves are normally incident on a region of long-
crested periodic bottom undulation, a significant amo-
unt of incident wave energy is reflected at the point
where the wavenumber of the periodic bottom undula-
tion (K) is twice the wavenumber of surface wave (k),
that is, 2k/K=1. This wave reflection, which has been
known as Bragg reflection, has been studied by both
laboratory experiments and theoretical or numerical
models.

Davies and Heathershaw (1984) reported experi-
mental data for the reflection of waves due to sinu-
soidal ripple patches with different numbers of ripples.
In their experiment, the ripple wavelength and ampli-
tude were 1 m and 5 cm, respectively, and the number
of ripples was 2, 4, and 10. The water depth at the
constant-depth region was 15.6 cm for the cases of 2
and 4 ripples and 31.3 cm for the case of 10 ripples.
This experimental data has been used for comparison
with various numerical models by a number of resear-
chers including Kirby (1986), Massel (1993), Cham-
berlain and Porter (1995), and Suh et al. (1997). All of
them showed that the mild-slope equation gives a good
agreement with the experimental data for the cases of 2
and 4 ripples, but, for the case of 10 ripples, it fails to
predict the magnitude of resonant reflection. Therefore,
in the present study, a numerical test is made only for
the case of 10 ripples.

Fig. 6 shows the reflection coefficients calculated by
the modified mild-slope equation and the mild-slope
equation along with the experimental data. Again, in
order to examine the relative importance of the bottom

slope square term and the bottom curvature term, the
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Fig. 6. Comparison between numerical results and the
experimental data of Davies and Heathershaw (1984)
for wave reflection by ripples; ® = experimental data,
—— =modified mild-slope equation, — — —=mild-
slope equation, —-—-— =mild-slope equation
plus the bottom slope square term, — -- — - — =
mild-slope equation plus the bottom curvature term.

results of the mild-slope equation including only the
slope square term or the bottom curvature term are also
presented in Fig. 6. The results of the modified mild-
slope equation and the mild-slope equation including
only the bottom curvature term show some difference
only in the vicinity of 2k/K=2.0, and for other values
of 2k/K they are almost identical so that the difference
is undistinguishable in the figure. Both the modified
mild-slope equation and the mild-slope equation includ-
ing only the bottom curvature term describe the
resonant peak very well. The mild-slope equation and
that including only the slope square term (shown to be
almost identical in the figure), however, while correctly
positioning the resonant reflection, completely fail to
predict its magnitude. Some of the researchers have
interpreted this failure to be attributed to the violation
on the mild-slope assumption that the depth must vary
slowly over a wavelength. However the results shown
in Fig. 6 suggest that this interpretation is not appro-
priate. The failure of the mild-slope equation may be
not because the depth varies rapidly but because it does
not include the effect of bottom curvature. It is also
worthwhile to note that, for this Bragg problem, the
depth perturbation about the mean bed level is of the
form of Asin(Kx), where A is the ripple amplitude, so

that (dh/dx) = O(€’) where € =A/h<<1 (A is the ripple
wavelength). Therefore, as for the Bragg problem, it is
not surprising that the bottom curvature term is more

important than the slope square term.
6. CONCLUSIONS

By examining the modified mild-slope equation
which, compared to the Berkhoff's mild-slope equation,
includes additional terms proportional to the square of
bottom slope and to the bottom curvature, it has been
shown that both terms are equally important in inter-
mediate-depth water, but in shallow water the influence
of the bottom curvature term diminishes while that of
the bottom slope square term remains significant. In
deep water, the effects of both terms are negligible, as
expected.

In order to examine the importance of these terms in
more detail, the modified mild-slope equation and the
Berkhoff's mild-slope equation were tested for the
problems of wave reflection from a plane slope, a non-
plane slope, and periodic ripples. In addition, in order
to compare the relative importance of these terms, the
mild-slope equation plus only the bottom slope square
term or the bottom curvature term was tested for the
same problems. It was shown that, when only the
bottom slope is concerned, the mild-slope equation can
give accurate results up to a slope of 1 in 1 rather than
1 in 3, which, until now, has been known as the
limiting bottom slope for the proper application of the
mild-slope equation. It was also shown that the bottom
curvature term plays an important role in modeling
wave propagation over a bottom topography with rela-
tively mild variation, but, where the bottom slope is
not small, the bottom slope square term should also be
included for more accurate results.

In most practical applications, the influence of the
bottom slope square term is negligible so that the mild-
slope equation plus only the bottom curvature term
may give sufficiently accurate results. However, the
modified mild-slope equation already exists, which inclu-

des the bottom slope square term as well. Therefore,
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there is no reason not to use it, because its use may
require only a little increase of computational time or

programming effort.
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