• Title/Summary/Keyword: set-associative

Search Result 78, Processing Time 0.028 seconds

Performance Analysis of n-way Associative Cache and Fully Associative Cache (n-way Set Associative Cache와 Fully Associative Cache성능 분석)

  • Jo, Yong-Hun;Kim, Jeong-Seon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.3
    • /
    • pp.802-810
    • /
    • 1997
  • In this paper, the performance of direce mapping caches, 2_, 4_, 8_, .., 4096_way way set associative caches, and fully assiciative caches are analyized by trace simulation for verivying their effectiveness.In general, it is well known that as n, the number of main memory lines to be stored into one cache line number in direct mapping cache, increases, the performance of the cache memory should get higher linearly.According to our analysis, however, it is not true on all the cache organizations.It is shown that as n increases, miss ratios get lower only when the small cache(less than 256K) using large line size is used.It is also shown that fully associative mapping achieves high performance only when small size cache using large line size ia used.

  • PDF

Effective Algorithm for the Low-Power Set-Associative Cache Memory (저전력 집합연관 캐시를 위한 효과적인 알고리즘)

  • Jung, Bo-Sung;Lee, Jung-Hoon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.1
    • /
    • pp.25-32
    • /
    • 2014
  • In this paper, we proposed a partial-way set associative cache memory with an effective memory access time and low energy consumption. In the proposed set-associative cache memory, it is allowed to access only a 2-ways among 4-way at a time. Choosing ways to be accessed is made dynamically via the least significant two bits of the tag. The chosen 2 ways are sequentially accessed by the way selection bits that indicate the most recently referred way. Therefore, each entry in the way has an additional bit, that is, the way selection bit. In addition, instead of the 4-way LRU or FIFO algorithm, we can utilize a simple 2-way replacement policy. Simulation results show that the energy*delay product can be reduced by about 78%, 14%, 39%, and 15% compared with a 4-way set associative cache, a sequential-way cache, a way-tracking cache, and a way cache respectively.

Set-theoretic Kripke-style Semantics for Weakly Associative Substructural Fuzzy Logics (약한 결합 원리를 갖는 준구조 퍼지 논리를 위한 집합 이론적 크립키형 의미론)

  • Yang, Eunsuk
    • Korean Journal of Logic
    • /
    • v.22 no.1
    • /
    • pp.25-42
    • /
    • 2019
  • This paper deals with Kripke-style semantics, which will be called set-theoretic Kripke-style semantics, for weakly associative substructural fuzzy logics. We first recall three weakly associative substructural fuzzy logic systems and then introduce their corresponding Kripke-style semantics. Next, we provide set-theoretic completeness results for them.

An Associative Class Set Generation Method for supporting Location-based Services (위치 기반 서비스 지원을 위한 연관 클래스 집합 생성 기법)

  • 김호숙;용환승
    • Journal of KIISE:Databases
    • /
    • v.31 no.3
    • /
    • pp.287-296
    • /
    • 2004
  • Recently, various location-based services are becoming very popular in mobile environments. In this paper, we propose a new concept of a frequent item set, called “associative class set”, for supporting the location-based service which uses a large quantity of a spatial database in mobile computing environments, and then present a new method for efficiently generating the associative class set. The associative class set is generated with considering the temporal relation of queries, the spatial distance of required objects, and access patterns of users. The result of our research can play a fundamental role in efficiently supporting location-based services and in overcoming the limitation of mobile environments. The associative class set can be applied by a recommendation system of a geographic information system in mobile computing environments, mobile advertisement, city development planning, and client cache police of mobile users.

Instruction Flow based Early Way Determination Technique for Low-power L1 Instruction Cache

  • Kim, Gwang Bok;Kim, Jong Myon;Kim, Cheol Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.9
    • /
    • pp.1-9
    • /
    • 2016
  • Recent embedded processors employ set-associative L1 instruction cache to improve the performance. The energy consumption in the set-associative L1 instruction cache accounts for considerable portion in the embedded processor. When an instruction is required from the processor, all ways in the set-associative instruction cache are accessed in parallel. In this paper, we propose the technique to reduce the energy consumption in the set-associative L1 instruction cache effectively by accessing only one way. Gshare branch predictor is employed to predict the instruction flow and determine the way to fetch the instruction. When the branch prediction is untaken, next instruction in a sequential order can be fetched from the instruction cache by accessing only one way. According to our simulations with SPEC2006 benchmarks, the proposed technique requires negligible hardware overhead and shows 20% energy reduction on average in 4-way L1 instruction cache.

Cache Architecture Design for the Performance Improvement of OpenRISC Core (OpenRISC 코어의 성능향상을 위한 캐쉬 구조 설계)

  • Jung, Hong-Kyun;Ryoo, Kwang-Ki
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.1
    • /
    • pp.68-75
    • /
    • 2009
  • As the recent performance of microprocessor is improving quickly, the necessity of cache is growing because of the increase of the access time of main memory. Every block of direct-mapped cache maps to one cache line. Although the mapping rule is simple, if different blocks map to one cache line, the miss ratio will be higher than the set-associative cache due to conflicts. In this paper, for the improvement of the direct-mapped cache of OpenRISC, 4-way set-associative cache is proposed. Four blocks of the main memory of the proposed cache map to one cache line so that the miss ratio is less than the direct-mapped cache. Pseudo-LRU Policy, which is one of the Line Replacement Policies, is used for decreasing the number of bits that store LRU value. The OpenRISC core including the 4-way set-associative cache was verified with FPGA emulation. As the result of performance measurement using test program, the performance of the OpenRISC core including the 4-way set-associative cache is higher than the previous one by 50% and the decrease of miss ratio is more than 15%.

Performance Improvement and Power Consumption Reduction of an Embedded RISC Core

  • Jung, Hong-Kyun;Jin, Xianzhe;Ryoo, Kwang-Ki
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.1
    • /
    • pp.78-84
    • /
    • 2012
  • This paper presents a branch prediction algorithm and a 4-way set-associative cache for performance improvement of an embedded RISC core and a clock-gating algorithm with observability don’t care (ODC) operation to reduce the power consumption of the core. The branch prediction algorithm has a structure using a branch target buffer (BTB) and 4-way set associative cache that has a lower miss rate than a direct-mapped cache. Pseudo-least recently used (LRU) policy is used for reducing the number of LRU bits. The clock-gating algorithm reduces dynamic power consumption. As a result of estimation of the performance and the dynamic power, the performance of the OpenRISC core applied to the proposed architecture is improved about 29% and the dynamic power of the core with the Chartered 0.18 ${\mu}m$ technology library is reduced by 16%.

Design of Cache Memory System for Next Generation CPU (차세대 CPU를 위한 캐시 메모리 시스템 설계)

  • Jo, Ok-Rae;Lee, Jung-Hoon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.6
    • /
    • pp.353-359
    • /
    • 2016
  • In this paper, we propose a high performance L1 cache structure for the high clock CPU. The proposed cache memory consists of three parts, i.e., a direct-mapped cache to support fast access time, a two-way set associative buffer to reduce miss ratio, and a way-select table. The most recently accessed data is stored in the direct-mapped cache. If a data has a high probability of a repeated reference, when the data is replaced from the direct-mapped cache, the data is stored into the two-way set associative buffer. For the high performance and fast access time, we propose an one way among two ways set associative buffer is selectively accessed based on the way-select table (WST). According to simulation results, access time can be reduced by about 7% and 40% comparing with a direct cache and Intel i7-6700 with two times more space respectively.

Energy-efficient Set-associative Cache Using Bi-mode Way-selector (에너지 효율이 높은 이중웨이선택형 연관사상캐시)

  • Lee, Sungjae;Kang, Jinku;Lee, Juho;Youn, Jiyong;Lee, Inhwan
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.1 no.1
    • /
    • pp.1-10
    • /
    • 2012
  • The way-lookup cache and the way-tracking cache are considered to be the most energy-efficient when used for level 1 and level 2 caches, respectively. This paper proposes an energy-efficient set-associative cache using the bi-mode way-selector that combines the way selecting techniques of the way-tracking cache and the way-lookup cache. The simulation results using an Alpha 21264-based system show that the bi-mode way-selecting L1 instruction cache consumes 27.57% of the energy consumed by the conventional set-associative cache and that it is as energy-efficient as the way-lookup cache when used for L1 instruction cache. The bi-mode way-selecting L1 data cache consumes 28.42% of the energy consumed by the conventional set-associative cache, which means that it is more energy-efficient than the way-lookup cache by 15.54% when used for L1 data cache. The bi-mode way-selecting L2 cache consumes 15.41% of the energy consumed by the conventional set-associative cache, which means that it is more energy-efficient than the way-tracking cache by 16.16% when used for unified L2 cache. These results show that the proposed cache can provide the best level of energy-efficiency regardless of the cache level.

A New Methodology for the Optimal Design of BSB Neural Associative Memories Considering the Domain of Attraction

  • Park, Yonmook;Tahk, Min-Jea;Bang, Hyo-Choong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.43.5-43
    • /
    • 2001
  • This paper considers a new synthesis of the optimally performing brain-state-in-a-box (BSB) neural associative memory given a set of prototype patterns to be stored as asymptotically stable equilibrium points with the large and uniform size of the domain of attraction (DOA). First, we propose a new theorem that will be used to provide a guideline in design of the BSB neural associative memory. Finally, a design example is given to illustrate the proposed approach and to compare with existing synthesis methods.

  • PDF