• Title/Summary/Keyword: servo systems

Search Result 725, Processing Time 0.033 seconds

Robust Current Control for Permanent Magnet Synchronous Motors by the Inverse LQ Method - An Evaluation of Control Performance Using Servo-Locks at Low Speed -

  • Takami Hiroshi
    • Journal of Power Electronics
    • /
    • v.4 no.4
    • /
    • pp.228-236
    • /
    • 2004
  • This paper describes the optimal current-control of a permanent magnet synchronous motor by the use of robust and simple current controllers, based upon the analytical procedure known as the inverse LQ (ILQ) design method. The ILQ design method is a strategy for finding the optimal gains based on pole assignment without solving the Riccati equation. It is very important to keep the motor in robust servo-lock. By experiments and simulations, we will show that the ILQ optimal servo-system with servo-lock is more insensitive at low speeds to variations in armature inductance than the standard PI servo-system. Variations in armature inductance have the greatest influence on the responses of a servo-system.

Designing the high performance electro-hydraulic position controller using 3-port servo valve for heavy and unidirectional load system (대부하 편하중 유압시스템의 3-port 서어보 밸브를 사용한 고속제어기 설계 연구)

  • 김영대;이관섭;정인수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.276-281
    • /
    • 1989
  • Comparison 3-port servo system with 4-port is made to obtain optimal design for heavy and unidirectional hydraulic system, It is concluded that 3-port servo system it more adequate than 4-port for the heavy load system which is usually operated at lower frequencies. High performance electro-hydraulic position controller is designed using 3-port servo valve. It includes dynamic pressure feedback as a inner loop and position feedback as a outer loop.

  • PDF

An integral of output error VSC for servo control using dynamic switching function (서보제어를 위한 출력편차 적분 가변구조 제어기)

  • 박귀태;이기상;김석진;배상욱
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.1066-1071
    • /
    • 1992
  • A new scheme of OFVSC(Output Feedvack Variable Structure Controller) is proposed for the servo control system. The main structure of proposed control scheme is composed of servo compensator and dynamic switiching function. By the use of dynamic switiching function the assumption of full state availability can be removed and the disturbances which does not satisfy the matching condition cna be rejected. And the servo compensator which is designed for each output variable the robustness for the all type of disturbances. And the performances of proposed control system are evaluated through simulation studies for a numerical example.

  • PDF

The simulation of INS error due to gimbal servo dynamics (김블 서어보 다이나믹스에 의한 INS 오차 시뮬레이션)

  • 김현백;정태호;오문수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.281-285
    • /
    • 1986
  • In this paper, the characteristics of disturbance torque of gimbal servo dynamics are studied, and the simulation methods of gimbal servo dynamics and INS error due to angular rate and linear acceleration of vehicle are proposed. In results of the simulation for a specific INS, it is estimated that INS velocity error due to gimbal servo dynamics is nearly proportional to square of vehicle acceleration.

  • PDF

Position and swing angle control for loads of overhead cranes (천정크레인 부하의 위치 및 흔들림 제어)

  • Lee, Ho-Hoon;Cho, Sung-Kun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.2
    • /
    • pp.297-304
    • /
    • 1997
  • This paper presents a systematic design method of an anti-swing control law for overhead cranes. A velocity servo system for the trolley of a crane is designed based on the dynamics of the trolley and its load. The velocity servo system compensates for the effects of load swing on the trolley dynamics so that the velocity servo is independent of load swing. The velocity servo system is used for the design of a position servo system for the trolley via the loop shaping method. The position servo system and the swing dynamics of the load are then used to design an angle control system for load swing based on the root locus method. The combined position servo and the angle control systems constitute the overall control system. In the presence of low frequency disturbances, the proposed control law guarantees accurate position control for the trolley and fast damping for load swing. Furthermore, the performance of the proposed control law is independent of the mass of the load. Experimental results on a prototype crane show the effectiveness of the proposed anti-swing control law.

Repetitive Control for the Track-Following Servo System of an Optical Disk Drive (광 디스크 드라이브의 트랙 추종 서보 시스템을 위한 반복 제어)

  • 문정호;이문노;정명진
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.1
    • /
    • pp.39-46
    • /
    • 1999
  • Disturbances acting on the track-following servo system of an optical disk drive inherently contain significant periodic components that cause tracking errors of a periodic nature. Such disturbances can be effectively rejected by employing a repetitive controller, which must be implemented carefully in consideration of system stability. Plant uncertainty makes it difficult to design a repetitive controller that will improve tracking performance yet preserve system stability. In this paper, we examine the problem of designing a repetitive controller for an optical disk drive track-following servo system with uncertain plant coefficients. We propose a graphical design technique based on the frequency domain analysis of linear interval systems. This design method results in a repetitive controller that will maintain system stability against all admissible plant uncertainties. We show simulation and experimental results to verify the validity of the proposed design method.

  • PDF

Vibration Control of an Axially Moving String: Inclusion of the Dynamics of Electro Hydraulic Servo System

  • Kim, Chang-Won;Hong, Keum-Shik;Kim, Yong-Shik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.342-347
    • /
    • 2003
  • In this paper, an active vibration control of a translating tensioned string with the use of an electro-hydraulic servo mechanism at the right boundary is investigated. The dynamics of the moving strip is modeled as a string with tension by using Hamilton’s principle for the systems with changing mass. The control objective is to suppress the transverse vibrations of the strip via boundary control. A right boundary control law in the form of current input to the servo valve based upon the Lyapunov’s second method is derived. It is revealed that a time-varying boundary force and a suitable passive damping at the right boundary can successfully suppress the transverse vibrations. The exponential stability of the closed loop system is proved. The effectiveness of the control laws proposed is demonstrated via simulations.

  • PDF

A New Approach to Servo System Design in Hard Disk Drive Systems

  • Kim, Nam-Guk;Choi, Soo-Young;Chu, Sang-Hoon;Lee, Kang-Seok;Lee, Ho-Seong
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.2
    • /
    • pp.137-142
    • /
    • 2005
  • In this paper, we propose a new servo system design strategy to reduce the position error signal(PES) and track mis-registration(TMR) in magnetic disk drive systems. The proposed method provides a systematic design procedure based on the plant model and an optimal solution via an optimization with a 'Robust Random Neighborhood Search(RRNS)' algorithm. In addition, it guarantees the minimum PES level as well as stability to parametric uncertainties. Furthermore, the proposed method can be used to estimate the performance at the design stage and thus can reduce the cost and time for the design of the next generation product. The reduction of PES as well as robust stability is demonstrated by simulation and experiments.

  • PDF

Friction Compensation For High Precision Control of Servo Systems Using Adaptive Neural Network

  • Chung, Dae-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.179-179
    • /
    • 2000
  • An adaptive neural network compensator for stick-slip friction phenomena in servo systems is proposed to supplement the traditionally available position and velocity control loops for precise motion control. The neural network compensator plays a role of canceling the effect of nonlinear slipping friction force. This enables the mechatronic systems more precise control and realistic design in the digital computer. It was confirmed that the control accuracy is more improved near zero velocity and the points of changing the moving direction through numerical simulation

  • PDF

Sensorless speed control of DC servo motor (DC 서보모터의 센서리스 속도 제어)

  • 김창세;오정석;하주식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.203-206
    • /
    • 1997
  • DC servo motors are widely used in many industrial fields as actuator of robot and driving power motors of electrical vehicle. Usually in the speed control systems, of motors, speed sensors are required and this fact results in the increased price and operating cost and the limited application of the motors. In this paper, a new speed control method for DC servo motor is proposed. In the scheme, the rotational speed is estimated by the measurement values of the armature voltage and current, instead of measurement by sensor. Optimal control theory is applied to design of the controller in construction of real system. This paper also report on the results of experiments to prove the validity of the proposed method.

  • PDF