• Title/Summary/Keyword: servo

Search Result 2,285, Processing Time 0.036 seconds

Robust Servo Design and Application for Optical Disk Drive using Robust Control Theory: QFT vs. H_inf (광 디스크 서보 설계를 위한 강건 제어 이론의 적용 및 평가: QFT vs. $H_{\infty}$)

  • Choi, Jin-Young;Park, Tae-Wook;Yang, Hyun-Seok;Park, No-Cheol;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.541-546
    • /
    • 2005
  • In this paper, the various uncertainties, which are generated in working of an optical disk drive, are discussed in details and the robust servo design considering the uncertainties are discussed. First, the classification of the uncertainties and the modeling process including that are treated. Then, the robust servo designs using QFT and $H_{\infty}$ theory are performed. Finally, the designed servo loops realized by DSP are applied to the real system. From these experiments, we proved that the robust servo design using QFT and $H_{\infty}$ have a good performance and a good robust stability when it compared with the conventional servo loop.

  • PDF

The Performance Evaluation of Precision Position Control Servo System (정밀 위치제어 서보시스템의 성능 평가)

  • 이원희;김동수;최병오
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.424-427
    • /
    • 2002
  • Pneumatic control systems have the potential to provide high output power to weight and size ratios at a relatively low cost. However, they are mainly employed in open-loop control applications where positioning repeatability is not of great importance. This paper presents precision positioning control of pneumatic servo cylinder with on-off valve, Pneumatic low-friction cylinder with servo valve and DC servo motor under parameter variations. Basically positioning control uses PID controller, where needs a linearized model. A neural network is added to a PID controller to compensator nonlinearity of the system and an influence of friction force is consider as disturbance. The performances of the proposed algorithms were compared by experiments with them of PID controller. From those experiments is was shown that the proposed algorithms are more efficient about settling time, steady 7tate error and overshoot than PID control algorithm.

  • PDF

2-axis tracking control of servo system with two-degree-of-freedom (2자유도를 갖는 서보 시스템의 2축 추적제어)

  • 이제희;박호준;허욱열
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.844-847
    • /
    • 1996
  • This paper describes the servo position control for the 2-axis positioning table the servo controller consists of conventional feedback loops, disturbance observer. To reduce the contour error, which occurs in the multi-dimensions machines, cross-coupled controller(CCC) is suggested. A weak point of the CCC is their low effectiveness in dealing with arbitrary nonlinear contour such as circles and parabolas. This paper introduces a new nonlinear CCC that is based on control gains that vary during the contour movement The gains of CCC and adjusted in real time according to the shape of nonlinear contour. The feedback controller based on the disturbance observer compensated for external disturbance, plant uncertainty and bad effectiveness by friction model. Suggested servo controller which improve the contouring accuracy, apply to the 2-axis system. Simulation results on 2-axis table verify the effectiveness of the proposed servo controller.

  • PDF

A Robust PID Control Algorithm for a Servo Manipulator with Friction

  • Jin, Jae-Hyun;Park, Byung-Suk;Lee, Hyo-Jik;Yoon, Ji-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2275-2278
    • /
    • 2005
  • In this paper, a control algorithm for a servo manipulator is focused on. A servo manipulator system has been developed for remotely handling radioactive materials in a hot cell. It is driven by servo motors. The torque from a servo motor is transferred through a reducer to the corresponding axis. The PID control algorithm is a simple and effective algorithm for such application. However, since friction degrades the algorithm's performance, friction has to be considered and compensated. The major aberrations are the positional tracking errors and the limit cycle. The authors have considered a switching term to a conventional PID algorithm to reduce the friction's effect. It has been tested by a hardware test.

  • PDF

Fine Gap Control Using Pneumatic Servo System (공압서보시스템에 의한 미세 간극제어 시스템 설계)

  • 김동환;김영진;정대화
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.12
    • /
    • pp.45-56
    • /
    • 2002
  • A pneumatic servo system requiring a fine gap control in a photo-electric sensor which is used for a LCD array detection device is introduced. The gap controlled by the pneumatic servo system remains within around 50~80 ${\mu}{\textrm}{m}$, and the system possesses an effect to eliminate undesirable particles on the LCD plate by blowing air out. The air flow rate is initially controlled by a servo valve and expanded by a booster valve, thus the controlled air pressure contributes to maintaining an appropriate gap between the LCD plate and photo-electric sensor An air floating plate of two degrees of freedom is designed and fabricated, and a fine tilting motion control is also implemented by assigning different gap commands. The pressure control and direct gap control are proposed, and each performance is verified experimentally.

The State Estimator Design for Servo system with Delayed Input (지연 입력을 가진 서보시스템의 상태 추정자 설계)

  • Shin, Doo-Jin;Kong, Jeong-Ja;Huh, Uk-Youl
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.5
    • /
    • pp.607-614
    • /
    • 1999
  • This paper deals with the design problem of the state estimator for servo system. The servo system has input time delay which depends on the computational time of control algorithm. The delayed input is a factor that brings out the state estimation error. So in order to reduce the state estimation error of the system, we propose a state estimator in which the delayed input of the system is considered. For this purpose, discrete time state space model is established accounting for the delayed input and a state estimator is designed based on this model. Kalman filter algorithm is employed in the design of the state estimator. The proposed estimator is used in the speed control of servo system with delayed input. Performance of the proposed state estimator is exemplified via simulations and experiments for servo system. Also, robustness of the proposed estimator to modeling error by variation of the system parameters is also shown in simulations.

  • PDF

Design of Speed Observer and Controller for AC Servo System by Rapid Design System (고속설계시스템에 의한 AC 서보시스템의 속도관측기 및 속도제어기 설계)

  • Ji Jun-Keun;Lee Dong-Min
    • Proceedings of the KAIS Fall Conference
    • /
    • 2004.11a
    • /
    • pp.170-173
    • /
    • 2004
  • In this paper design of speed observer and controller for AC servo system by rapid design system(RG-01D) using DSP of Realgain company is introduced. 'AC Servo-Designer' system, including CEMTool /SIMTool S/W, RG-DSPIO board, AC servo driver and AVTOTool program, is used in this research. Because 'AC Servo-Designer' system can use SIMTool blocks to design and implement various controller in short time, speed observer and controller for AC servo system is easily designed and implemented according to control objectives.

  • PDF

A study on the improvement of floating point operation for AC servo motor controller based on fixed point DSP (고정소수연산 DSP 기반 AC 서보모터 제어기의 소수연산 개선에 관한 연구)

  • Hwang In-Sung;Choi Chi-Young;Hong Sun-Ki
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1196-1198
    • /
    • 2004
  • This paper represents the improvement of floating point operation for AC servo motor controller based on fixed point operation DSP. TMS320F2812 has fixed point operation processing structure. The controller parameters are modified to the digitized data by scaling the original parameters. TMS320F 2812 is a 32-bit processor, and it could have enough accuracy to got the digitized data this procedure is implemented and the experiments controling a AC servo system.

  • PDF

Controller Design for a Nozzle-flapper Type Servo Valve with Electric Position Sensor

  • Istanto, Iwan;Lee, Ill-yeong;Huh, Jun-young;Lee, Hyun-cheol
    • Journal of Drive and Control
    • /
    • v.16 no.1
    • /
    • pp.29-35
    • /
    • 2019
  • The control performance of hydraulic systems is basically influenced by the performance of electrohydraulic servo valve incorporated in a hydraulic control system. In this study, a control design was proposed to improve the control performance of a servo valve with a non-contact eddy current type position sensor. A mathematical model for the valve was obtained through an experimental identification process. A PI-D control together with a feedforward (FF) control was applied to the valve. To further improve the dynamic response of the servo valve, an input shaping filter (ISF) was incorporated into the valve control system. Finally, the effectiveness of the proposed control system was verified experimentally.

An Optimal Approach to Auto-tuning of Multiple Parameters for High-Precision Servo Control Systems (고정밀 서보 제어를 위한 다매개변수 자동 조정 방법)

  • Kim, Nam Guk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.7
    • /
    • pp.43-52
    • /
    • 2022
  • Design of a controller for a high-precision servo control system has been a popular topic while finding optimal parameters for multiple controllers is still a challenging subject. In this paper, we propose a practical scheme to optimize multi-parameters for the robust servo controller design by introducing a new cost function and optimization scheme. The proposed design method provides a simple and practical tool for the systematic servo design to reduce the control error with guaranteeing robust stability of the overall system. The reduction of the position error by 24% along with a faster convergence rate is demonstrated using a typical hard disk drive servo controller with 41 parameters.