• Title/Summary/Keyword: serine/threonine kinase

Search Result 137, Processing Time 0.024 seconds

Suppression of ASKβ(AtSK32), a Clade III Arabidopsis GSK3, Leads to the Pollen Defect during Late Pollen Development

  • Dong, Xiangshu;Nou, Ill-Sup;Yi, Hankuil;Hur, Yoonkang
    • Molecules and Cells
    • /
    • v.38 no.6
    • /
    • pp.506-517
    • /
    • 2015
  • Arabidopsis Shaggy-like protein kinases (ASKs) are Arabidopsis thaliana homologs of glycogen synthase kinase 3/SHAGGY-like kinases (GSK3/SGG), which are comprised of 10 genes with diverse functions. To dissect the function of $ASK{\beta}$ (AtSK32), $ASK{\beta}$ antisense transgenic plants were generated, revealing the effects of $ASK{\beta}$ down-regulation in Arabidopsis. Suppression of $ASK{\beta}$ expression specifically interfered with pollen development and fertility without altering the plants' vegetative phenotypes, which differed from the phenotypes reported for Arabidopsis plants defective in other ASK members. The strength of these phenotypes showed an inverse correlation with the expression levels of $ASK{\beta}$ and its co-expressed genes. In the aborted pollen of $ASK{\beta}$ antisense plants, loss of nuclei and shrunken cytoplasm began to appear at the bicellular stage of microgametogenesis. The in silico analysis of promoter and the expression characteristics implicate $ASK{\beta}$ is associated with the expression of genes known to be involved in sperm cell differentiation. We speculate that $ASK{\beta}$ indirectly affects the transcription of its co-expressed genes through the phosphorylation of its target proteins during late pollen development.

The functions of mTOR in ischemic diseases

  • Hwang, Seo-Kyoung;Kim, Hyung-Hwan
    • BMB Reports
    • /
    • v.44 no.8
    • /
    • pp.506-511
    • /
    • 2011
  • Mammalian Target of Rapamycin (mTOR) is a serine/threonine kinase and that forms two multiprotein complexes known as the mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). mTOR regulates cell growth, proliferation and survival. mTORC1 is composed of the mTOR catalytic subunit and three associated proteins: raptor, mLST8/$G{\beta}L$ and PRAS40. mTORC2 contains mTOR, rictor, mLST8/$G{\beta}L$, mSin1, and protor. Here, we discuss mTOR as a promising anti-ischemic agent. It is believed that mTORC2 lies down-stream of Akt and acts as a direct activator of Akt. The different functions of mTOR can be explained by the existence of two distinct mTOR complexes containing unique interacting proteins. The loss of TSC2, which is upstream of mTOR, activates S6K1, promotes cell growth and survival, activates mTOR kinase activities, inhibits mTORC1 and mTORC2 via mTOR inhibitors, and suppresses S6K1 and Akt. Although mTOR signaling pathways are often activated in human diseases, such as cancer, mTOR signaling pathways are deactivated in ischemic diseases. From Drosophila to humans, mTOR is necessary for Ser473 phosphorylation of Akt, and the regulation of Akt-mTOR signaling pathways may have a potential role in ischemic disease. This review evaluates the potential functions of mTOR in ischemic diseases. A novel mTOR-interacting protein deregulates over-expression in ischemic disease, representing a new mechanism for controlling mTOR signaling pathways and potential therapeutic strategies for ischemic diseases.

Epoxyeicosatrienoic Acid Inhibits the Apoptosis of Cerebral Microvascular Smooth Muscle Cells by Oxygen Glucose Deprivation via Targeting the JNK/c-Jun and mTOR Signaling Pathways

  • Qu, Youyang;Liu, Yu;Zhu, Yanmei;Chen, Li;Sun, Wei;Zhu, Yulan
    • Molecules and Cells
    • /
    • v.40 no.11
    • /
    • pp.837-846
    • /
    • 2017
  • As a component of the neurovascular unit, cerebral smooth muscle cells (CSMCs) are an important mediator in the development of cerebral vascular diseases such as stroke. Epoxyeicosatrienoic acids (EETs) are the products of arachidonic acid catalyzed by cytochrome P450 epoxygenase. EETs are shown to exert neuroprotective effects. In this article, the role of EET in the growth and apoptosis of CSMCs and the underlying mechanisms under oxygen glucose deprivation (OGD) conditions were addressed. The viability of CMSCs was decreased significantly in the OGD group, while different subtypes of EETs, especially 14,15-EET, could increase the viability of CSMCs under OGD conditions. RAPA (serine/threonine kinase Mammalian Target of Rapamycin), a specific mTOR inhibitor, could elevate the level of oxygen free radicals in CSMCs as well as the anti-apoptotic effects of 14,15-EET under OGD conditions. However, SP600125, a specific JNK (c-Jun N-terminal protein kinase) pathway inhibitor, could attenuate oxygen free radicals levels in CSMCs as well as the anti-apoptotic effects of 14,15-EET under OGD conditions. These results strongly suggest that EETs exert protective functions during the growth and apoptosis of CSMCs, via the JNK/c-Jun and mTOR signaling pathways in vitro. We are the first to disclose the beneficial roles and underlying mechanism of 14,15-EET in CSMC under OGD conditions.

CK2 Enzyme Affinity Against c-myc424-434 Substrate in Human Lung Cancer Tissue

  • Yaylim, Ilhan;Ozkan, Nazli Ezgi;Isitmangil, Turgut;Isitmangil, Gulbu;Turna, Akif;Isbir, Turgay
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.10
    • /
    • pp.5233-5236
    • /
    • 2012
  • CK2 is a serine threonine kinase that participates in a variety of cellular processes with more than 300 defined substrates. This critical enzyme is known to be upregulated in cancers, but the role of this upregulation in carcinogenesis is not yet fully understood but c-myc, one of the defined CK2 substrates, is a well-known proto-oncogene that is normally essential in developmental process but is also involved in tumor development. We evaluated the optimal enzyme and substrate concentrations for CK2 activity in both neoplastic and non-neoplastic human lung tissues using the c-$myc^{424-434}$ peptide (EQKLISEEDL) as a substrate. The activities measured for the neoplastic tissue were 600-750 U/mg protein while those for the control tissue was in the range of 650-800 U/mg. $K_m$ value for c-myc peptide was determined as $0.33{\mu}M$ in non-neoplastic tissue and $0.18{\mu}M$ in neoplastic tissue. In this study, we did not observe an increased activity in the neoplastic tissue when compared with the non-neoplastic lung tissue, but we recorded two times higher affinity for c-$myc^{424-434}$ in cancer tissue. Considering the metabolic position of c-$myc^{424-434}$, our results suggest that phosphorylation by CK2 may be important in dimerization and thus it might affect the regulation of c-myc in cancer tissues.

Regulation of AKT Activity by Inhibition of the Pleckstrin Homology Domain-PtdIns(3,4,5)P3 Interaction Using Flavonoids

  • Kang, Yerin;Jang, Geupil;Ahn, Seunghyun;Lee, Youngshim;Shin, Soon Young;Yoon, Youngdae
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.8
    • /
    • pp.1401-1411
    • /
    • 2018
  • The serine-threonine kinase AKT plays a pivotal role in tumor progression and is frequently overactivated in cancer cells; this protein is therefore a critical therapeutic target for cancer intervention. We aimed to identify small molecule inhibitors of the pleckstrin homology (PH) domain of AKT to disrupt binding of phosphatidylinositol-3,4,5-trisphosphate (PIP3), thereby downregulating AKT activity. Liposome pulldown assays coupled with fluorescence spectrometry were used to screen flavonoids for inhibition of the AKT PH-PIP3 interaction. Western blotting was used to determine the effects of the inhibitors on AKT activation in cancer cells, and in silico docking was used for structural analysis and optimization of inhibitor structure. Several flavonoids showing up to 50% inhibition of the AKT PH-PIP3 interaction decreased the level of AKT activation at the cellular level. In addition, the modified flavonoid showed increased inhibitory effects and the approach would be applied to develop anticancer drug candidates. In this study, we provide a rationale for targeting the lipid-binding domain of AKT, rather than the catalytic kinase domain, in anticancer drug development.

Reconstruction and Exploratory Analysis of mTORC1 Signaling Pathway and Its Applications to Various Diseases Using Network-Based Approach

  • Buddham, Richa;Chauhan, Sweety;Narad, Priyanka;Mathur, Puniti
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.365-377
    • /
    • 2022
  • Mammalian target of rapamycin (mTOR) is a serine-threonine kinase member of the cellular phosphatidylinositol 3-kinase (PI3K) pathway, which is involved in multiple biological functions by transcriptional and translational control. mTOR is a downstream mediator in the PI3K/Akt signaling pathway and plays a critical role in cell survival. In cancer, this pathway can be activated by membrane receptors, including the HER (or ErbB) family of growth factor receptors, the insulin-like growth factor receptor, and the estrogen receptor. In the present work, we congregated an electronic network of mTORC1 built on an assembly of data using natural language processing, consisting of 470 edges (activations/interactions and/or inhibitions) and 206 nodes representing genes/proteins, using the Cytoscape 3.6.0 editor and its plugins for analysis. The experimental design included the extraction of gene expression data related to five distinct types of cancers, namely, pancreatic ductal adenocarcinoma, hepatic cirrhosis, cervical cancer, glioblastoma, and anaplastic thyroid cancer from Gene Expression Omnibus (NCBI GEO) followed by pre-processing and normalization of the data using R & Bioconductor. ExprEssence plugin was used for network condensation to identify differentially expressed genes across the gene expression samples. Gene Ontology (GO) analysis was performed to find out the over-represented GO terms in the network. In addition, pathway enrichment and functional module analysis of the protein-protein interaction (PPI) network were also conducted. Our results indicated NOTCH1, NOTCH3, FLCN, SOD1, SOD2, NF1, and TLR4 as upregulated proteins in different cancer types highlighting their role in cancer progression. The MCODE analysis identified gene clusters for each cancer type with MYC, PCNA, PARP1, IDH1, FGF10, PTEN, and CCND1 as hub genes with high connectivity. MYC for cervical cancer, IDH1 for hepatic cirrhosis, MGMT for glioblastoma and CCND1 for anaplastic thyroid cancer were identified as genes with prognostic importance using survival analysis.

Apolipoprotein H: a novel regulator of fat accumulation in duck myoblasts

  • Ziyi, Pan;Guoqing, Du;Guoyu, Li;Dongsheng, Wu;Xingyong, Chen;Zhaoyu, Geng
    • Journal of Animal Science and Technology
    • /
    • v.64 no.6
    • /
    • pp.1199-1214
    • /
    • 2022
  • Apolipoprotein H (APOH) primarily engages in fat metabolism and inflammatory disease response. This study aimed to investigate the effects of APOH on fat synthesis in duck myoblasts (CS2s) by APOH overexpression and knockdown. CS2s overexpressing APOH showed enhanced triglyceride (TG) and cholesterol (CHOL) contents and elevated the mRNA and protein expression of AKT serine/threonine kinase 1 (AKT1), ELOVL fatty acid elongase 6 (ELOVL6), and acetyl-CoA carboxylase 1 (ACC1) while reducing the expression of protein kinase AMP-activated catalytic subunit alpha 1 (AMPK), peroxisome proliferator activated receptor gamma (PPARG), acyl-CoA synthetase long chain family member 1 (ACSL1), and lipoprotein lipase (LPL). The results showed that knockdown of APOH in CS2s reduced the content of TG and CHOL, reduced the expression of ACC1, ELOVL6, and AKT1, and increased the gene and protein expression of PPARG, LPL, ACSL1, and AMPK. Our results showed that APOH affected lipid deposition in myoblasts by inhibiting fatty acid beta-oxidation and promoting fatty acid biosynthesis by regulating the expression of the AKT/AMPK pathway. This study provides the necessary basic information for the role of APOH in fat accumulation in duck myoblasts for the first time and enables researchers to study the genes related to fat deposition in meat ducks in a new direction.

Expression of Ku Correlates with Radiation Sensitivities in the Head and Neck Cancer Cell Lines (두경부종양 세포주에서 Ku 단백질 발현 정도에 따른 방사선 민감도)

  • Lee Sang-wook;Yu Eunsil;Yi So-Lyoung;Son Se-Hee;Kim ong Hoon;Ahn Seung Do;Shin Seong Soo;Choi Eun Kyung
    • Radiation Oncology Journal
    • /
    • v.22 no.3
    • /
    • pp.208-216
    • /
    • 2004
  • Purpose: DNA-dependent protein kinase (DNA-PK) is a serine/threonine kinase consisting of a 470 kDa catalytic subunit (DNA-PKcs) and a heterodimeric regulatory complex, called Ku, which is composed of 70 kDa(Ku 70) and 86 kDa (Ku 80) proteins. The DNA-PK has been shown to play a pivotal role in rejoining DNA double-strand-breaks (dsb) in mammalian cells. The purpose of this study is to examine the relationship between the level of Ku expression and radiation sensitivity. Methods and Materials: Nine head and neck, cancer cell lines showed various intrinsic radiation sensitivities. Among the nine, AMC-HN-3 cell was the most sensitive for X-ray irradiation and AMC-HN-9 cell was the most resistance. The most sensitive and resistant cell lines were selected and the test sensitivity of radiation and expression of Ku were measured. Radiation sensitivity was obtained by colony forming assay and Ku protein expression using Western blot analysis. Results: Ku80 increased expression by radiation, wheres Ku70 did not. Overexpression of Ku80 protein increased radiation resistance in AMC-HN9 cell line. There was a correlation between Ku8O expression and radiation resistance. Ku80 was shown to play an important role in radiation damage response. Conclusion: Induction of Ku80 expression had an important role in DNA damage repair by radiation. Ku80 expression may be an effective predictive assay of radiosensitivity on head and neck cancer.

Dietary Exposure to Transgenic Rice Expressing the Spider Silk Protein Fibroin Reduces Blood Glucose Levels in Diabetic Mice: The Potential Role of Insulin Receptor Substrate-1 Phosphorylation in Adipocytes

  • Park, Ji-Eun;Jeong, Yeon Jae;Park, Joon Beom;Kim, Hye Young;Yoo, Young Hyun;Lee, Kwang Sik;Yang, Won Tae;Kim, Doh Hoon;Kim, Jong-Min
    • Development and Reproduction
    • /
    • v.23 no.3
    • /
    • pp.223-229
    • /
    • 2019
  • Type 2 diabetes mellitus (T2DM) is characterized by insulin resistance (IR). T2DM is correlated with obesity and most T2DM medications have been developed for enhancing insulin sensitivity. Silk protein fibroin (SPF) from spiders has been suggested as an attractive biomaterial for medical purposes. We generated transgenic rice (TR) expressing SPF and fed it to diabetic $BKS.Cg-m+/+Lepr^{db}$ mice to monitor the changes in blood glucose levels and adipose tissue proteins associated with energy metabolism and insulin signaling. In the present study, the adipocyte size in abdominal fat in TR-SPF-fed mice was remarkably smaller than that of the control. Whereas the adenosine monophosphate-activated protein kinase (AMPK)-activated protein kinase and insulin receptor substrate 1 (IRS1) protein levels were increased in abdominal adipose tissues after TR-SPF feeding, levels of six-transmembrane protein of prostate 2 (STAMP2) proteins decreased. Phosphorylation of AMPK at threonine 172 and IRS1 at serine 307 and tyrosine 632 were both increased in adipose tissues from TR-SPF-fed mice. Increased expression and phosphorylation of IRS1 at both serine 307 and tyrosine 632 in adipose tissues indicated that adipocytes obtained from abdominal fat in TR-SPF-fed mice were more susceptible to insulin signaling than that of the control. STAMP2 protein levels decreased in adipose tissues from TR-SPF-fed mice, indicating that STAMP2 proteins were reducing adipocytes that were undergoing lipolysis. Taken together, this study showed that TR-SPF was effective in reducing blood glucose levels in diabetic mice and that concurrent lipolysis in abdominal adipocytes was associated with alterations of AMPK, IRS1, and STAMP2. Increased IRS1 expression and its phosphorylation by TR-SFP were considered to be particularly important in the induction of lipolysis in adipocytes, as well as in reducing blood glucose levels in this animal model.

Inhibition of eNOS/sGC/PKG Pathway Decreases Akt Phosphorylation Induced by Kainic Acid in Mouse Hippocampus

  • Lee, Sang-Hyun;Byun, Jong-Seon;Kong, Pil-Jae;Lee, Hee-Jae;Kim, Duk-Kyung;Kim, Hae-Sung;Sohn, Jong-Hee;Lee, Jae-Jun;Lim, So-Young;Chun, Wan-Joo;Kim, Sung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.1
    • /
    • pp.37-43
    • /
    • 2010
  • The serine/threonine kinase Akt has been shown to play a role of multiple cellular signaling pathways and act as a transducer of many functions initiated by growth factor receptors that activate phosphatidylinositol 3-kinase (PI3K). It has been reported that phosphorylated Akt activates eNDS resulting in the production of NO and that NO stimulates soluble guanylate cyclase (sGC), which results in accumulation of cGMP and subsequent activation of the protein kinase G (PKG). It has been also reported that PKG activates PI3K/Akt signaling. Therefore, it is possible that PI3K, Akt, eNOS, sGC, and PKG form a loop to exert enhanced and sustained activation of Akt. However, the existence of this loop in eNOS-expressing cells, such as endothelial cells or astrocytes, has not been reported. Thus, we examined a possibility that Akt phosphorylation might be enhanced via eNOS/sGC/PKG/PI3K pathway in astrocytes in vivo and in vitro. Phosphorylation of Akt was detected in astrocytes after KA treatment and was maintained up to 72 h in mouse hippocampus. 2 weeks after KA treatment, astrocytic Akt phosphorylation was normalized to control. The inhibition of eNOS, sGC, and PKG significantly decreased Akt and eNDS phosphorylation induced by KA in astrocytes. In contrast, the decreased phosphorylation of Akt and eNDS by eNDS inhibition was significantly reversed with PKG activation. The above findings in mouse hippocampus were also observed in primary astrocytes. These data suggest that Akt/eNOS/sGC/PKG/PI3K pathway may constitute a loop, resulting in enhanced and sustained Akt activation in astrocytes.