Browse > Article
http://dx.doi.org/10.5187/jast.2022.e60

Apolipoprotein H: a novel regulator of fat accumulation in duck myoblasts  

Ziyi, Pan (College of Animal Science and Technology, Anhui Agricultural University)
Guoqing, Du (College of Animal Science and Technology, Anhui Agricultural University)
Guoyu, Li (College of Animal Science and Technology, Anhui Agricultural University)
Dongsheng, Wu (College of Animal Science and Technology, Anhui Agricultural University)
Xingyong, Chen (College of Animal Science and Technology, Anhui Agricultural University)
Zhaoyu, Geng (College of Animal Science and Technology, Anhui Agricultural University)
Publication Information
Journal of Animal Science and Technology / v.64, no.6, 2022 , pp. 1199-1214 More about this Journal
Abstract
Apolipoprotein H (APOH) primarily engages in fat metabolism and inflammatory disease response. This study aimed to investigate the effects of APOH on fat synthesis in duck myoblasts (CS2s) by APOH overexpression and knockdown. CS2s overexpressing APOH showed enhanced triglyceride (TG) and cholesterol (CHOL) contents and elevated the mRNA and protein expression of AKT serine/threonine kinase 1 (AKT1), ELOVL fatty acid elongase 6 (ELOVL6), and acetyl-CoA carboxylase 1 (ACC1) while reducing the expression of protein kinase AMP-activated catalytic subunit alpha 1 (AMPK), peroxisome proliferator activated receptor gamma (PPARG), acyl-CoA synthetase long chain family member 1 (ACSL1), and lipoprotein lipase (LPL). The results showed that knockdown of APOH in CS2s reduced the content of TG and CHOL, reduced the expression of ACC1, ELOVL6, and AKT1, and increased the gene and protein expression of PPARG, LPL, ACSL1, and AMPK. Our results showed that APOH affected lipid deposition in myoblasts by inhibiting fatty acid beta-oxidation and promoting fatty acid biosynthesis by regulating the expression of the AKT/AMPK pathway. This study provides the necessary basic information for the role of APOH in fat accumulation in duck myoblasts for the first time and enables researchers to study the genes related to fat deposition in meat ducks in a new direction.
Keywords
Apolipoprotein H; Myoblasts; Lipid metabolism; AKT/AMPK signalling pathway;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Xing S, Liu R, Zhao G, Liu L, Groenen MAM, Madsen O, et al. RNA-seq analysis reveals hub genes involved in chicken intramuscular fat and abdominal fat deposition during development. Front Genet. 2020;11:1009. https://doi.org/10.3389/fgene.2020.01009   DOI
2 Ye Y, Lin S, Mu H, Tang X, Ou Y, Chen J, et al. Analysis of differentially expressed genes and signaling pathways related to intramuscular fat deposition in skeletal muscle of sex-linked dwarf chickens. BioMed Res Int. 2014;2014:724274. https://doi.org/10.1155/2014/724274   DOI
3 Qiu F, Xie L, Ma J, Luo W, Zhang L, Chao Z, et al. Lower expression of SLC27A1 enhances intramuscular fat deposition in chicken via down-regulated fatty acid oxidation mediated by CPT1A. Front Physiol. 2017;8:449. https://doi.org/10.3389/fphys.2017.00449   DOI
4 Guo Y, Guo X, Deng Y, Cheng L, Hu S, Liu H, et al. Effects of different rearing systems on intramuscular fat content, fatty acid composition, and lipid metabolism-related genes expression in breast and thigh muscles of Nonghua ducks. Poult Sci. 2020;99:4832-44. https://doi.org/10.1016/j.psj.2020.06.073   DOI
5 Stein O, Stein Y, Lefevre M, Roheim PS. The role of apolipoprotein A-IV in reverse cholesterol transport studied with cultured cells and liposomes derived from an ether analog of phosphatidylcholine. Biochim Biophys Acta Mol Cell Biol Lipids. 1986;878:7-13. https://doi.org/10.1016/0005-2760(86)90337-1   DOI
6 George J, Harats D, Gilburd B, Afek A, Levy Y, Schneiderman J, et al. Immunolocalization of β2-glycoprotein I (apolipoprotein H) to human atherosclerotic plaques: potential implications for lesion progression. Circulation. 1999;99:2227-30. https://doi.org/10.1161/01.CIR.99.17.2227   DOI
7 Afek A, George J, Shoenfeld Y, Gilburd B, Levy Y, Shaish A, et al. Enhancement of atherosclerosis in beta-2-glycoprotein I-immunized apolipoprotein E-deficient mice. Pathobiology. 1999;67:19-25. https://doi.org/10.1159/000028046   DOI
8 Tsonkova VG, Sand FW, Wolf XA, Grunnet LG, Ringgaard AK, Ingvorsen C, et al. The EndoC-βH1 cell line is a valid model of human beta cells and applicable for screenings to identify novel drug target candidates. Mol Metab. 2018;8:144-57. https://doi.org/10.1016/j.molmet.2017.12.007   DOI
9 Perrin RJ, Craig-Schapiro R, Malone JP, Shah AR, Gilmore P, Davis AE, et al. Identification and validation of novel cerebrospinal fluid biomarkers for staging early Alzheimer's disease. PLOS ONE. 2011;6:e16032. https://doi.org/10.1371/journal.pone.0016032   DOI
10 Hoekstra M, Chen HY, Rong J, Dufresne L, Yao J, Guo X, et al. Genome-wide association study highlights APOH as a novel locus for lipoprotein(a) levels-brief report. Arterioscler Thromb Vasc Biol. 2021;41:458-64. https://doi.org/10.1161/ATVBAHA.120.314965   DOI
11 Song F, Poljak A, Crawford J, Kochan NA, Wen W, Cameron B, et al. Plasma apolipoprotein levels are associated with cognitive status and decline in a community cohort of older individuals. PLOS ONE. 2012;7:e34078. https://doi.org/10.1371/journal.pone.0034078   DOI
12 Nakaya Y, Schaefer EJ, Brewer HB Jr. Activation of human post heparin lipoprotein lipase by apolipoprotein H (β2-glycoprotein I). Biochem Biophys Res Commun. 1980;95:1168-72. https://doi.org/10.1016/0006-291x(80)91595-8   DOI
13 Schousboe I. Binding of β2-glycoprotein I to platelets: effect of adenylate cyclase activity. Thromb Res. 1980;19:225-37. https://doi.org/10.1016/0049-3848(80)90421-1   DOI
14 Nimpf J, Bevers EM, Bomans PHH, Till U, Wurm H, Kostner GM, et al. Prothrombinase activity of human platelets is inhibited by β2-glycoprotein-I. Biochim Biophys Acta Gen Subj. 1986;884:142-9. https://doi.org/10.1016/0304-4165(86)90237-0   DOI
15 Sha H, Sun S, Francisco AB, Ehrhardt N, Xue Z, Liu L, et al. The ER-associated degradation adaptor protein Sel1L regulates LPL secretion and lipid metabolism. Cell Metabol. 2014;20:458-70. https://doi.org/10.1016/j.cmet.2014.06.015   DOI
16 He C, Zhang G, Ouyang H, Zhang P, Chen Y, Wang R, et al. Effects of β2/aβ2 on oxLDLinduced CD36 activation in THP-1 macrophages. Life Sci. 2019;239:117000. https://doi.org/10.1016/j.lfs.2019.117000   DOI
17 Yagyu H, Chen G, Yokoyama M, Hirata K, Augustus A, Kako Y, et al. Lipoprotein lipase (LpL) on the surface of cardiomyocytes increases lipid uptake and produces a cardiomyopathy. J Clin Invest. 2003;111:419-26. https://doi.org/doi.org/10.1172/JCI16751   DOI
18 Yuan SM, Guo Y, Wang Q, Xu Y, Wang M, Chen HN, et al. Over-expression of PPAR-γ2 gene enhances the adipogenic differentiation of hemangioma-derived mesenchymal stem cells in vitro and in vivo. Oncotarget. 2017;8:115817-28. https://doi.org/10.18632/oncotarget.23705   DOI
19 Zhong J, Gong W, Lu L, Chen J, Lu Z, Li H, et al. Irbesartan ameliorates hyperlipidemia and liver steatosis in type 2 diabetic db/db mice via stimulating PPAR-γ, AMPK/Akt/mTOR signaling and autophagy. Int Immunopharmacol. 2017;42:176-84. https://doi.org/10.1016/j.intimp.2016.11.015   DOI
20 Chawla A, Barak Y, Nagy L, Liao D, Tontonoz P, Evans RM. PPAR-γ dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation. Nat Med. 2001;7:48-52. https://doi.org/10.1038/83336   DOI
21 Guo L, Cui H, Zhao G, Liu R, Li Q, Zheng M, et al. Intramuscular preadipocytes impede differentiation and promote lipid deposition of muscle satellite cells in chickens. BMC Genomics. 2018;19:838. https://doi.org/10.1186/s12864-018-5209-5   DOI
22 Jin S, Xu Y, Zang H, Yang L, Lin Z, Li Y, et al. Expression of genes related to lipid transport in meat-type ducks divergent for low or high residual feed intake. Asian-Australas J Anim Sci. 2020;33:416-23. https://doi.org/10.5713/ajas.19.0284   DOI
23 Machann J, Haring H, Schick F, Stumvoll M. Intramyocellular lipids and insulin resistance. Diabetes Obes Metab. 2004;6:239-48. https://doi.org/10.1111/j.1462-8902.2004.00339.x   DOI
24 Xu S, Huang Y, Xie Y, Lan T, Le K, Chen J, et al. Evaluation of foam cell formation in cultured macrophages: an improved method with Oil Red O staining and DiI-oxLDL uptake. Cytotechnology. 2010;62:473-81. https://doi.org/10.1007/s10616-010-9290-0   DOI
25 Shaw CS, Clark J, Wagenmakers AJM. The effect of exercise and nutrition on intramuscular fat metabolism and insulin sensitivity. Annu Rev Nutr. 2010;30:13-34. https://doi.org/10.1146/annurev.nutr.012809.104817   DOI
26 Mihaylova MM, Shaw RJ. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol. 2011;13:1016-23. https://doi.org/10.1038/ncb2329   DOI
27 Moro C, Bajpeyi S, Smith SR. Determinants of intramyocellular triglyceride turnover: implications for insulin sensitivity. Am J Physiol Endocrinol Metab. 2008;294:E203-13. https://doi.org/10.1152/ajpendo.00624.2007   DOI
28 Jacobsen SC, Brons C, Bork-Jensen J, Ribel-Madsen R, Yang B, Lara E, et al. Effects of shortterm high-fat overfeeding on genome-wide DNA methylation in the skeletal muscle of healthy young men. Diabetologia. 2012;55:3341-9. https://doi.org/10.1007/s00125-012-2717-8   DOI
29 Liu J, Fu R, Liu R, Zhao G, Zheng M, Cui H, et al. Protein profiles for muscle development and intramuscular fat accumulation at different post-hatching ages in chickens. PLOS ONE. 2016;11:e0159722. https://doi.org/10.1371/journal.pone.0159722   DOI
30 Reyer H, Metzler-Zebeli BU, Trakooljul N, Oster M, Murani E, Ponsuksili S, et al. Transcriptional shifts account for divergent resource allocation in feed efficient broiler chickens. Sci Rep. 2018;8:12903. https://doi.org/10.1038/s41598-018-31072-7   DOI
31 Tyszka-Czochara M, Konieczny P, Majka M. Recent advances in the role of AMP-activated protein kinase in metabolic reprogramming of metastatic cancer cells: targeting cellular bioenergetics and biosynthetic pathways for anti-tumor treatment. J Physiol Pharmacol. 2018;69:337-49. https://doi.org/10.26402/jpp.2018.3.07   DOI
32 Castro A, Lazaro I, Selva DM, Cespedes E, Girona J, Plana N, et al. APOH is increased in the plasma and liver of type 2 diabetic patients with metabolic syndrome. Atherosclerosis. 2010;209:201-5. https://doi.org/10.1016/j.atherosclerosis.2009.09.072   DOI
33 Wang X, Li Y, Chen X, Zhou Z, Yao J. Human acetyl-CoA carboxylase 1 is an isomerase: carboxyl transfer is activated by catalytic effect of isomerization. J Phys Chem B. 2019;123:6757-64. https://doi.org/10.1021/acs.jpcb.9b05384   DOI
34 Fullerton MD, Galic S, Marcinko K, Sikkema S, Pulinilkunnil T, Chen ZP, et al. Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nat Med. 2013;19:1649-54. https://doi.org/10.1038/nm.3372   DOI
35 Du C, Wu M, Liu H, Ren Y, Du Y, Wu H, et al. Thioredoxin-interacting protein regulates lipid metabolism via Akt/mTOR pathway in diabetic kidney disease. Int J Biochem Cell Biol. 2016;79:1-13. https://doi.org/10.1016/j.biocel.2016.08.006   DOI
36 Habinowski SA, Witters LA. The effects of AICAR on adipocyte differentiation of 3T3-L1 cells. Biochem Biophys Res Commun. 2001;286:852-6. https://doi.org/10.1006/bbrc.2001.5484   DOI
37 Jiang T, Shi X, Yan Z, Wang X, Gun S. Isoimperatorin enhances 3T3-L1 preadipocyte differentiation by regulating PPARγ and C/EBPα through the Akt signaling pathway. Exp Ther Med. 2019;18:2160-6. https://doi.org/10.3892/etm.2019.7820   DOI
38 Yan G, Li X, Peng Y, Long B, Fan Q, Wang Z, et al. The fatty acid β-oxidation pathway is activated by leucine deprivation in HepG2 cells: a comparative proteomics study. Sci Rep. 2017;7:1914. https://doi.org/10.1038/s41598-017-02131-2   DOI
39 Li T, Li X, Meng H, Chen L, Meng F. ACSL1 affects triglyceride levels through the PPARγ pathway. Int J Med Sci. 2020;17:720-7. https://doi.org/10.7150/ijms.42248   DOI
40 Singh AB, Kan CFK, Dong B, Liu J. SREBP2 activation induces hepatic long-chain acyl-CoA synthetase 1 (ACSL1) expression in vivo and in vitro through a sterol regulatory element (SRE) motif of the ACSL1 C-promoter. J Biol Chem. 2016;291:5373-84. https://doi.org/10.1074/jbc.m115.696872   DOI
41 Manning BD, Toker A. AKT/PKB signaling: navigating the network. Cell. 2017;169:381-405. https://doi.org/10.1016/j.cell.2017.04.001   DOI
42 Peng X, Chen R, Wu Y, Huang B, Tang C, Chen J, et al. PPARγ-PI3K/AKT-NO signal pathway is involved in cardiomyocyte hypertrophy induced by high glucose and insulin. J Diabetes Complications. 2015;29:755-60. https://doi.org/10.1016/j.jdiacomp.2015.04.012   DOI
43 Bermudez B, Dahl TB, Medina I, Groeneweg M, Holm S, Montserrat-de la Paz S, et al. Leukocyte overexpression of intracellular NAMPT attenuates atherosclerosis by regulating PPARγ-dependent monocyte differentiation and function. Arterioscler Thromb Vasc Biol. 2017;37:1157-67. https://doi.org/10.1161/ATVBAHA.116.308187   DOI
44 Goudriaan JR, Espirito Santo SM, Voshol PJ, Teusink B, van Dijk KW, van Vlijmen BJM, et al. The VLDL receptor plays a major role in chylomicron metabolism by enhancing LPLmediated triglyceride hydrolysis. J Lipid Res. 2004;45:1475-81. https://doi.org/10.1194/jlr.M400009-JLR200   DOI
45 Sunaga H, Matsui H, Anjo S, Syamsunarno MRAA, Koitabashi N, Iso T, et al. Elongation of long-chain fatty acid family member 6 (Elovl6)-driven fatty acid metabolism regulates vascular smooth muscle cell phenotype Tthrough AMP-activated protein kinase/Kruppel-like factor 4 (AMPK/KLF4) signaling. J Am Heart Assoc. 2016;5:e004014. https://doi.org/10.1161/JAHA.116.004014    DOI
46 Matsuzaka T, Shimano H. Elovl6: a new player in fatty acid metabolism and insulin sensitivity. J Mol Med. 2009;87:379-84. https://doi.org/10.1007/s00109-009-0449-0   DOI
47 Fan X, Zhu W, Qiu L, Zhang G, Zhang Y, Miao Y. Elongase of very long chain fatty acids 6 (ELOVL6) promotes lipid synthesis in buffalo mammary epithelial cells. J Anim Physiol Anim Nutr. 2022;106:1-11. https://doi.org/10.1111/jpn.13536   DOI
48 Matsuzaka T, Atsumi A, Matsumori R, Nie T, Shinozaki H, Suzuki-Kemuriyama N, et al. Elovl6 promotes nonalcoholic steatohepatitis. Hepatology. 2012;56:2199-208. https://doi.org/10.1002/hep.25932   DOI