Browse > Article
http://dx.doi.org/10.14348/molcells.2015.2323

Suppression of ASKβ(AtSK32), a Clade III Arabidopsis GSK3, Leads to the Pollen Defect during Late Pollen Development  

Dong, Xiangshu (Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University)
Nou, Ill-Sup (Department of Horticulture, Sunchon National University)
Yi, Hankuil (Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University)
Hur, Yoonkang (Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University)
Abstract
Arabidopsis Shaggy-like protein kinases (ASKs) are Arabidopsis thaliana homologs of glycogen synthase kinase 3/SHAGGY-like kinases (GSK3/SGG), which are comprised of 10 genes with diverse functions. To dissect the function of $ASK{\beta}$ (AtSK32), $ASK{\beta}$ antisense transgenic plants were generated, revealing the effects of $ASK{\beta}$ down-regulation in Arabidopsis. Suppression of $ASK{\beta}$ expression specifically interfered with pollen development and fertility without altering the plants' vegetative phenotypes, which differed from the phenotypes reported for Arabidopsis plants defective in other ASK members. The strength of these phenotypes showed an inverse correlation with the expression levels of $ASK{\beta}$ and its co-expressed genes. In the aborted pollen of $ASK{\beta}$ antisense plants, loss of nuclei and shrunken cytoplasm began to appear at the bicellular stage of microgametogenesis. The in silico analysis of promoter and the expression characteristics implicate $ASK{\beta}$ is associated with the expression of genes known to be involved in sperm cell differentiation. We speculate that $ASK{\beta}$ indirectly affects the transcription of its co-expressed genes through the phosphorylation of its target proteins during late pollen development.
Keywords
aborted pollen; antisense suppression; $ASK{\beta}$ (AtSK32, At3g61160); co-expressed genes; serine/threonine kinase; sperm cell formation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Coppe, A., Ferrari, F., Bisognin, A., Danieli, G.A., Ferrari, S., Bicciato, S., and Bortoluzzi, S. (2009). Motif discovery in promoters of genes co-localized and co-expressed during myeloid cells differentiation. Nucleic Acids Res. 37, 533-549.   DOI
2 Dal Santo, S., Stampfl, H., Krasensky, J., Kempa, S., Gibon, Y., Petutschnig, E., Rozhon, W., Heuck, A., Clausen, T., and Jonaka, C. (2004). Stress-induced GSK3 regulates the Redox stress response by phosphorylating glucose-6-phosphate dehydrogenase in Arabidopsis. Plant Cell 24, 3380-3392.
3 de Folter, S., Immink, R.G., Kieffer, M., Parenicova, L., Henz, S.R., Weigel, D., Busscher, M., Kooiker, M., Colombo, L., et al. (2005). Comprehensive interaction map of the Arabidopsis MADS Box transcription factors. Plant Cell 17, 1424-1433.   DOI   ScienceOn
4 de la Fuente van Bentem, S., Anrather, D., Dohnal, I., Roitinger, E., Csaszar, E., Joore, J., Buijnink, J., Carreri, A., Forzani, C., Lorkovic, Z.J., et al. (2008). Site-specific phosphorylation profiling of Arabidopsis proteins by mass spectrometry and peptide chip analysis. J. Proteome Res. 7, 2458-2470.   DOI   ScienceOn
5 Dietrich, C.R., Han, G., Chen, M., Berg, R.H., Dunn, T.M., and Cahoon, E.B. (2008). Loss-of-function mutations and inducible RNAi suppression of Arabidopsis LCB2 genes reveal the critical role of sphingolipids in gametophytic and sporophytic cell viability. Plant J. 54, 284-298.   DOI   ScienceOn
6 Doble, B.W., and Woodgett, J.R. (2003). GSK3: tricks of the trade for a multi-tasking kinase. J. Cell. Sci. 116, 1175-1186.   DOI
7 Dong, X., Feng, H., Xu, M., Lee, J., Kim, Y.K., Lim, Y.P., Piao, Z., Park, Y.D., Ma, H., and Hur, Y. (2013). Comprehensive analysis of genic male sterility-related genes in Brassica rapa using a newly developed Br300K oligomeric chip. PLoS One 8, e72178.   DOI
8 Yang, J., Wu, J., Romanovicz, D., Clark, G., and Roux, S.J. (2013). Co-regulation of exine wall patterning, pollen fertility and anther dehiscence by Arabidopsis apyrases 6 and 7. Plant Physiol. Biochem. 69, 62-73.   DOI   ScienceOn
9 Zhang, S., Cai, Z., and Wang, X. (2009). The primary signaling outputs of brassinosteroids are regulated by abscisic acid signaling. Proc. Natl. Acad. Sci. USA. 106, 4543-4548.   DOI   ScienceOn
10 Zhao, J., Peng, P., Schmitz, R.J., Decker, A.D., Tax, F.E., and Li, J. (2002). Two putative BIN2 substrates are nuclear components of brassinosteroid signaling. Plant Physiol. 130, 1221-1229.   DOI   ScienceOn
11 Zhu, J., Chen, H., Li, H., Gao, J.F., Jiang, H., Wang, C., Guan, Y.F., and Yang, Z.N. (2008). Defective in tapetal development and function 1 is essential for anther development and tapetal function for microspore maturation in Arabidopsis. Plant J. 55, 266-277.   DOI   ScienceOn
12 Zuberi, K., Franz, M., Rodriguez, H., Montojo, J., Lopes, C.T., Bader, G.D., and Morris, Q. (2013). GeneMANIA prediction server 2013 update. Nucleic Acids Res. 41, W115-122   DOI   ScienceOn
13 Filichkin, S.A., Leonard, J.M., Monteros, A., Liu, P.P., and Nonogaki, H. (2004). A novel endo-beta-mannanase gene in tomato LeMAN5 is associated with anther and pollen development. Plant physiol. 134, 1080-1087.   DOI   ScienceOn
14 Dornelas, M.C., Van, Lammeren, A.A., and Kreis, M. (2000). Arabidopsis thaliana SHAGGY-related protein kinases (AtSK11 and 12) function in perianth and gynoecium development. Plant J. 21, 419-429.   DOI
15 Du, Z., Zhou, X., Ling, Y., Zhang, Z., and Su, Z. (2010). agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res. 38, W64-70.   DOI
16 Feng, B., Lu, D., Ma, X., Peng, Y., Sun, Y., Ning, G., and Ma, H. (2012). Regulation of the Arabidopsis anther transcriptome by DYT1 for pollen development. Plant J. 72, 612-624.   DOI   ScienceOn
17 Frame, S, and Cohen, P. (2001). GSK3 takes centre stage more than 20 years after its discovery. Biochem. J. 359, 1-16.   DOI
18 Gao, J., Thelen, J.J., Dunker, A.K., and Xu, D. (2010). Musite, a tool for global prediction of general and kinase-specific phosphorylation sites. Mol. Cell. Proteomics 9, 2586-2600.   DOI
19 Gibalova, A., Renak, D., Matczuk, K., Dupl'akova, N., Chab, D., Twell, D., and Honys, D. (2009). AtbZIP34 is required for Arabidopsis pollen wall patterning and the control of several metabolic pathways in developing pollen. Plant Mol. Biol. 70, 581-601.   DOI
20 Guan, Y., Meng, X., Khanna, R., LaMontagne, E., Liu, Y., and Zhang, S. (2014). Phosphorylation of a WRKY transcription factor by MAPKs is required for pollen development and function in Arabidopsis. PLoS Genet. 10, e1004384.   DOI
21 Javelle, M., Marco, C.F., and Timmermans, M. (2011). In situ hybridization for the precise localization of transcripts in plants. J. Vis. Exp. 57, e3328.
22 Gupta, R., Ting, J.T., Sokolov, L.N., Johnson, S.A., and Luan, S. (2002). A tumor suppressor homolog, AtPTEN1, is essential for pollen development in Arabidopsis. Plant Cell 14, 2495-2507.   DOI
23 Higo, K., Ugawa, Y., Iwamoto, M., and Korenaga, T. (1999). Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res. 27, 297-300.   DOI   ScienceOn
24 Iwata, Y., Nishino, T., Iwano, M., Takayama, S., and Koizumi, N. (2012). Role of the plant-specific endoplasmic reticulum stressinducible gene TIN1 in the formation of pollen surface structure in Arabidopsis thaliana. Plant Biotechnol. 29, 51-56.   DOI
25 Jonak, C., and Hirt, H. (2002). Glycogen synthase kinase 3/SHAGGY-like kinases in plants: an emerging family with novel functions. Trends Plant Sci. 7, 457-461.   DOI   ScienceOn
26 Jope, R.S., and Johnson, G.V. (2004). The glamour and gloom of glycogen synthase kinase-3. Trends Biochem. Sci. 29, 95-102.   DOI   ScienceOn
27 Kaidanovich-Beilin, O., and Woodgett, J.R. (2011). GSK-3: functional insights from cell biology and animal models. Front. Mol. Neurosci. 4, 40.
28 Kim, T., Guan, S., Sun, Y., Deng, Z., Tang, W., Shang, J., Sun, Y., Burlingame, A.L., and Wang Z. (2009). Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nat. Cell Biol. 11, 1254-1260.   DOI   ScienceOn
29 Kondo, Y., Ito, T., Nakagami, H., Hirakawa, Y., Saito, M., Tamaki, T., Shirasu, K., and Fukuda, H. (2014). Plant GSK3 proteins regulate xylem cell differentiation downstream of TDIF-TDR signalling. Nat. Commun. 5, 3504.
30 Kofuji, R., Sumikawa, N., Yamasaki, M., Kondo, K., Ueda, K., Ito, M., and Hasebe, M. (2003). Evolution and divergence of the MADS-box gene family based on genome-wide expression analyses. Mol. Biol. Evol. 20, 1963-1977.   DOI   ScienceOn
31 Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., et al. (2007). Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947-2948.   DOI   ScienceOn
32 Li, J., and Nam, K.H. (2002). Regulation of brassinosteroid signaling by GSK3/SHAGGY-like kinase. Science 295, 1299-1301.
33 Liu, J., Zhang, Y., Qin, G., Tsuge, T., Sakaguchi, N., Luo, G., Sun, K., Shi, D., Aki, S., Zheng N., et al. (2008). Targeted degradation of the cyclin-dependent kinase inhibitor ICK4/KRP6 by RINGtype E3 ligases is essential for mitotic cell cycle progression during Arabidopsis gametogenesis. Plant Cell 20, 1538-1554.   DOI   ScienceOn
34 Ma, H. (2005). Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants. Annu. Rev. Plant Biol. 56, 393-434.   DOI   ScienceOn
35 Moon, S., Kim, S.R., Zhao, G., Yi, J., Yoo, Y., Jin, P., Lee, S.W., Jung, K.H., Zhang, D., An, G. (2013). Rice glycosyltransferase1 encodes a glycosyltransferase essential for pollen wall formation. Plant Physiol. 161, 663-675.   DOI
36 Peterson, R., Slovin, J.P., and Chen C. (2010). A simplified method for differential staining of aborted and non-aborted pollen grains. Int. J. Plant Biol. 1, e13.   DOI
37 Rozhon, W., Mayerhofer, J., Petutschnig, E., Fujioka, S., and Jonak, C. (2010). ASKtheta, a clade-III Arabidopsis GSK3, functions in the brassinosteroid signalling pathway. Plant J. 62, 215-223.   DOI   ScienceOn
38 Phan, H.A., Iacuone, S., Li, S.F., and Parish, R.W. (2011). The MYB80 transcription factor is required for pollen development and the regulation of tapetal programmed cell death in Arabidopsis thaliana. Plant Cell. 23, 2209-2224.   DOI   ScienceOn
39 Piao, H.L., Lim, J.H., Kim, S.J., Cheong, G.W., and Hwang, I. (2001). Constitutive over-expression of AtGSK1 induces NaCL stress response in the absence of NaCl stress and results in enhanced NaCl tolerance in Arabidopsis. Plant J. 27, 305-314.   DOI   ScienceOn
40 Renak, D., Dupl'akova, N., and Honys, D. (2012). Wide-scale screening of T-DNA lines for transcription factor genes affecting male gametophyte development in Arabidopsis. Sex. Plant Reprod. 25, 39-60.   DOI   ScienceOn
41 Saidi, Y., Hearn, T.J., and Coates, J.C. (2012). Function and evolution of 'green' GSK3/Shaggy-like kinases. Trends Plant Sci. 17, 39-46.   DOI   ScienceOn
42 Sancenon, V., Puig, S., Mateu-Andres, I., Dorcey, E., Thiele, D.J., and Penarrubia L. (2004). The Arabidopsis copper transporter COPT1 functions in root elongation and pollen development. J. Biol. Chem. 279, 15348-15355.   DOI   ScienceOn
43 Sanders, P.M., Bui, A.Q., Weterings, K., McIntire, K., Hsu, Y.-C., Lee, P.Y., Truong, M.T., Beals, T., and Goldberg, R. (1999). Anther developmental defects in Arabidopsis thaliana malesterile mutants. Sex. Plant Reprod. 11, 297-322.   DOI
44 Bailey, T.L., Boden, M., Buske, F.A., Frith, M., Grant, C.E., Clementi, L., Ren, J., Li, W.W., and Noble, W.S. (2009). MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 37, W202-208.   DOI   ScienceOn
45 Abe, H., Urao, T., Ito, T., Seki, M., Shinozaki, K., and Yamaguchi- Shinozaki, K. (2003). Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15, 63-78.   DOI
46 Adamczyk, B.J., and Fernandez, D.E. (2009). MIKC* MADS domain heterodimers are required for pollen maturation and tube growth in Arabidopsis. Plant Physiol. 149, 1713-1723.   DOI   ScienceOn
47 Backues, S.K., Korasick, D.A., Heese, A., and Bednarek, S.Y. (2010). The Arabidopsis dynamin-related protein2 family is essential for gametophyte development. Plant Cell 22, 3218- 3231.   DOI
48 Bate, N., and Twell, D. (1998). Functional architecture of a late pollen promoter: pollen-specific transcription is developmentally regulated by multiple stage-specific and co-dependent activator elements. Plant Mol. Biol. 37, 859-869.   DOI   ScienceOn
49 Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., Ideker, T. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498-2504.   DOI   ScienceOn
50 Schiott, M., Romanowsky, S.M., Baekgaard, L., Jakobsen, M.K., Palmgren, M.G., and Harper, J.F. (2004). A plant plasma membrane $Ca^{2+}$ pump is required for normal pollen tube growth and fertilization. Proc. Natl. Acad. Sci. USA 101, 9502-9507.   DOI   ScienceOn
51 Smyth, D.R., Bowman, J.L., and Meyerowitz, E.M. (1990). Early flower development in Arabidopsis. Plant Cell 2, 755-767.   DOI   ScienceOn
52 Sonnhammer, E.L., and Ostlund, G. (2015). InParanoid 8: orthology analysis between 273 proteomes, mostly eukaryotic. Nucleic Acids Res. 43, D234-239.   DOI   ScienceOn
53 Soto, G., Alleva, K., Mazzella, M.A., Amodeo, G., and Muschietti, J.P. (2008). AtTIP1;3 and AtTIP5;1, the only highly expressed Arabidopsis pollen-specific aquaporins, transport water and urea. FEBS Lett. 582, 4077-4082.   DOI   ScienceOn
54 Soto, G., Fox, R., Ayub, N., Alleva, K., Guaimas, F., Erijman, E.J., Mazzella, A., Amodeo, G., and Muschietti, J. (2010). TIP5;1 is an aquaporin specifically targeted to pollen mitochondria and is probably involved in nitrogen remobilization in Arabidopsis thaliana. Plant J. 64, 1038-1047.   DOI   ScienceOn
55 Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725-2729.   DOI   ScienceOn
56 Cai, Z., Liu, J., Wang, H., Yang, C., Chen, Y., Li, Y., Pan, S., Dong, R., Tang, G., Barajas-Lopez Jde, D., et al. (2014). GSK3-like kinases positively modulate abscisic acid signaling through phosphorylating clade III SnRK2s in Arabidopsis. Proc. Natl. Acad. Sci. USA 111, 9651-9656.   DOI   ScienceOn
57 Boavida, L.C., Shuai, B., Yu, H.J., Pagnussat, G.C., Sundaresan, V., and McCormick, S. (2009). A collection of Ds insertional mutants associated with defects in male gametophyte development and function in Arabidopsis thaliana. Genetics 181, 1369-1385.   DOI   ScienceOn
58 Borg, M., Brownfield, L., Khatab, H., Sidorova, A., Lingaya, M., and Twell, D. (2011). The R2R3 MYB transcription factor DUO1 activates a male germline-specific regulon essential for sperm cell differentiation in Arabidopsis. Plant Cell 23, 534-549.   DOI   ScienceOn
59 Borg, M., Rutley, N., Kagale, S., Hamamura, Y., Gherghinoiu, M., Kumar, S., Sari, U., Esparza-Franco, M.A., Sakamoto, W., Rozwadowski, K., et al. (2014). An EAR-dependent regulatory module promotes male germ cell division and sperm fertility in Arabidopsis. Plant Cell 26, 2098-2113.   DOI   ScienceOn
60 Charrier, B., Champion, A., Henry, Y., and Kreis, M. (2002). Expression profiling of the whole Arabidopsis shaggy-like kinase multigene family by real-time reverse transcriptase-polymerase chain reaction. Plant Physiol. 130, 577-590.   DOI   ScienceOn
61 Claisse, G., Charrier, B., and Kreis, M. (2007). The Arabidopsis thaliana GSK3/Shaggy like kinase AtSK3-2 modulates floral cell expansion. Plant Mol. Biol. 64, 113-124.   DOI   ScienceOn
62 Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735-743.   DOI   ScienceOn
63 Wang, R.S., Pandey, S., Li, S., Gookin, T.E., Zhao, Z., Albert, R., and Assmann, S.M. (2011). Common and unique elements of the ABA-regulated transcriptome of Arabidopsis guard cells. BMC Genomics 12, 216.   DOI   ScienceOn
64 Tichtinsky, G., Tavares, R., Takvorian, A., Schwebel-Dugue, N., Twell, D., and Kreis, M. (1998). An evolutionary conserved clade of plant GSK-3/shaggy-like protein kinase genes preferentially expressed in developing pollen. Biochim. Biophys. Acta 1442, 261-273.   DOI   ScienceOn
65 Toufighi, K., Brady, S.M., Austin, R., Ly, E., and Provart, N.J. (2005). The botany array resource: e-Northerns, expression angling, and promoter analyses. Plant J. 43, 153-163.   DOI   ScienceOn
66 Twell, D. (2011). Male gametogenesis and germline specification in flowering plants. Sex. Plant Reprod. 24, 149-160.   DOI   ScienceOn
67 Wang, C., Shang, J.X., Chen, Q.X., Oses-Prieto, J.A., Bai, M.Y., Yang, Y., Yuan, M., Zhang, Y.L., Mu, C.C., Deng Z., et al. (2013a). Identification of BZR1-interacting proteins as potential components of the brassinosteroid signaling pathway in Arabidopsis through tandem affinity purification. Mol. Cell. Proteomics 12, 3653-3665.   DOI   ScienceOn
68 Wang, L., Wang, W., Wang, Y.Q., Liu, Y.Y., Wang, J.X., Zhang, X.Q., Ye, D., and Chen, L.Q. (2013b). Arabidopsis galacturonosyltransferase (GAUT) 13 and GAUT14 have redundant functions in pollen tube growth. Mol. Plant 6, 1131-1148.   DOI   ScienceOn
69 Wellmer, F., Riechmann, J.L., Alves-Ferreira, M., and Meyerowitz, E.M. (2004). Genome-wide analysis of spatial gene expression in Arabidopsis flowers. Plant Cell 16, 1314-1326.   DOI   ScienceOn
70 Wijeratne, A.J., Zhang, W., Sun, Y., Liu, W., Albert, R., Zheng, Z., Oppenheimer, D.G., Zhao, D., and Ma, H. (2007). Differential gene expression in Arabidopsis wild-type and mutant anthers: insights into anther cell differentiation and regulatory networks. Plant J. 52, 14-29.   DOI   ScienceOn
71 Winter, D., Vinegar, B., Nahal, H., Ammar, R., Wilson, G.V., and Provart, N.J. (2007). An "Electronic Fluorescent Pictograph" browser for exploring and analyzing large-scale biological data sets. PLoS ONE 2, e718.   DOI
72 Xu, H., Knox, R.B., Taylor, P.E., and Singh, M.B. (1995). Bcp1, a gene required for male sterility in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 92, 2106-2110.   DOI
73 Xu, J., Yang, C., Yuan, Z., Zhang, D., Gondwe, M.Y., Ding, Z., Liang, W., Zhang, D., and Wilson, Z.A. (2010). The ABORTED MICROSPORES regulatory network is required for postmeiotic male reproductive development in Arabidopsis thaliana. Plant Cell 22, 91-107.   DOI   ScienceOn
74 Yan, Z., Zhao, J., Peng, P., Chihara, R.K., and Li, J. (2009). BIN2 functions redundantly with other Arabidopsis GSK3-like kinases to regulate brassicnosteroid signaling. Plant Physiol. 150, 710-721.   DOI   ScienceOn
75 Yang, T.J., Kim, J.S., Lim, K.B., Kwon, S.J., Kim, J.A., Jin, M., Park, J.Y., Lim, M.H., Kim, H., Kim, S.H., et al. (2005). The Korea Brassica genome project: a glimpse of the Brassica genome based on comparative genome analysis with Arabidopsis. Comp. Funct. Genomics 6, 138-146.   DOI   ScienceOn
76 Yang, C., Vizcay-Barrena, G., Conner, K., and Wilson, Z.A. (2007). MALE STERILITY1 is required for tapetal development and pollen wall biosynthesis. Plant Cell 19, 3530-3548.   DOI   ScienceOn