Browse > Article
http://dx.doi.org/10.5483/BMBRep.2011.44.8.506

The functions of mTOR in ischemic diseases  

Hwang, Seo-Kyoung (Vascular Medicine Research Unit, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School)
Kim, Hyung-Hwan (Vascular Medicine Research Unit, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School)
Publication Information
BMB Reports / v.44, no.8, 2011 , pp. 506-511 More about this Journal
Abstract
Mammalian Target of Rapamycin (mTOR) is a serine/threonine kinase and that forms two multiprotein complexes known as the mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). mTOR regulates cell growth, proliferation and survival. mTORC1 is composed of the mTOR catalytic subunit and three associated proteins: raptor, mLST8/$G{\beta}L$ and PRAS40. mTORC2 contains mTOR, rictor, mLST8/$G{\beta}L$, mSin1, and protor. Here, we discuss mTOR as a promising anti-ischemic agent. It is believed that mTORC2 lies down-stream of Akt and acts as a direct activator of Akt. The different functions of mTOR can be explained by the existence of two distinct mTOR complexes containing unique interacting proteins. The loss of TSC2, which is upstream of mTOR, activates S6K1, promotes cell growth and survival, activates mTOR kinase activities, inhibits mTORC1 and mTORC2 via mTOR inhibitors, and suppresses S6K1 and Akt. Although mTOR signaling pathways are often activated in human diseases, such as cancer, mTOR signaling pathways are deactivated in ischemic diseases. From Drosophila to humans, mTOR is necessary for Ser473 phosphorylation of Akt, and the regulation of Akt-mTOR signaling pathways may have a potential role in ischemic disease. This review evaluates the potential functions of mTOR in ischemic diseases. A novel mTOR-interacting protein deregulates over-expression in ischemic disease, representing a new mechanism for controlling mTOR signaling pathways and potential therapeutic strategies for ischemic diseases.
Keywords
Ischemic disease; mTOR; TSC2;
Citations & Related Records

Times Cited By Web Of Science : 8  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 Chresta, C. M., Davies, B. R., Hickson, I., Harding, T., Cosulich, S., Critchlow, S. E., Vincent, J. P., Ellston, R., Jones, D., Sini, P., James, D., Howard, Z., Dudley, P., Hughes, G., Smith, L., Maguire, S., Hummersone, M., Malagu, K., Menear, K., Jenkins, R., Jacobsen, M., Smith, G. C., Guichard, S. and Pass, M. (2010) AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer Res. 70, 288-298.   DOI
2 Dees, E. C., Baker, S. D., O'Reilly, S., Rudek, M. A., Davidson, S. B., Aylesworth, C., Elza-Brown, K., Carducci, M. A. and Donehower, R. C. (2005) A phase I and pharmacokinetic study of short infusions of UCN-01 in patients with refractory solid tumors. Clin. Cancer Res. 11, 664-671.
3 Granville, C. A., Memmott, R. M., Gills, J. J. and Dennis, P. A. (2006) Handicapping the race to develop inhibitors of the phosphoinositide 3-kinase/Akt/mammalian target of rapamycin pathway. Clin Cancer Res. 12, 679-689.   DOI   ScienceOn
4 Kondapaka, S. B., Singh, S. S., Dasmahapatra, G. P., Sausville, E. A. and Roy, K. K. (2003) Perifosine, a novel alkylphospholipid, inhibits protein kinase B activation. Mol. Cancer Ther. 2, 1093-1103.
5 Ma, W. W. and Jimeno, A. (2007) Temsirolimus. Drugs Today 43, 659-669.   DOI   ScienceOn
6 O'Donnell, A., Faivre, S. and Judson, I. (2003) A phase I study of the oral mTOR inhibitor RAD001 as monotherapy to identify the optimal biologically effective dose using toxicity, pharmacokinetic (PK) and pharmacodynamic (PD) endpoints in patients with solid tumours. Proc. Am. Soc. Clin. Oncol. 22, 803.
7 Sausville, E. A., Arbuck, S. G. and Messmann, R. (2001) Phase I trial of 72-hour continuous infusion UCN-01 in patients with refractoryneoplasms. J. Clin. Oncol. 19, 2319-2333.   DOI
8 Koh, P. O. (2010) Gingko biloba extract (EGb 761) prevents cerebral ischemia-induced p70S6 kinase and S6 phosphorylation. Am. J. Chin. Med. 38, 727-734.   DOI   ScienceOn
9 Shi, G. D., OuYang, Y. P., Shi, J. G., Liu, Y., Yuan, W. and Jia, L. S. (2011) PTEN deletion prevents ischemic brain injury by activating the mTOR signaling pathway. Biochem. Biophys. Res. Commun. 404, 941-945.   DOI   ScienceOn
10 Huang, C. Y., Hsiao, J. K., Lu, Y. Z., Lee, T. C. and Yu, L. C. (2011) Anti-apoptotic PI3K/Akt signaling by sodium/ glucose transporter 1 reduces epithelial barrier damage and bacterial translocation in intestinal ischemia. Lab Invest. 91, 294-309.   DOI   ScienceOn
11 Zhang, Y. and Ren, J. (2010) Autophagy in ALDH2- elicited cardioprotection against ischemic heart disease: slayer or savior? Autophagy. 6, 1212-1213.   DOI
12 Zhang, L., Yang, Y., Wang, Y. and Gao, X. (2011) Astragalus membranaceus extract promotes neovascularisation by VEGF pathway in rat model of ischemic injury. Pharmazie. 66, 144-150.
13 Vigneron, F., Dos, S. P., Lemoine, S., Bonnet, M., Tariosse, L., Couffinhal, T., Duplaa, C. and Jaspard, -V. B. (2011) GSK-3$\beta$at the crossroads in the signalling of heart preconditioning: implication of mTOR and Wnt pathways. Cardiovasc Res. 90, 49-56.   DOI   ScienceOn
14 Chong, Z. Z., Shang, Y. C., Zhang, L., Wang, S. and Maiese, K. (2010) Mammalian target of rapamycin: hitting the bull's-eye for neurological disorders. Oxid. Med. Cell. Longev. 3, 374-391.   DOI
15 Shang, J., Deguchi, K., Yamashita, T., Ohta, Y., Zhang, H., Morimoto, N., Liu, N., Zhang, X., Tian, F., Matsuura, T., Funakoshi, H., Nakamura, T. and Abe, K. (2010) Antiapoptotic and antiautophagic effects of glial cell line-derived neurotrophic factor and hepatocyte growth factor after transient middle cerebral artery occlusion in rats. J. Neurosci Res. 88, 2197-2206.   DOI   ScienceOn
16 Ma, H., Guo, R., Yu, L., Zhang, Y. and Ren, J. (2011) Aldehyde dehydrogenase 2 (ALDH2) rescues myocardial ischemia/reperfusion injury: role of autophagy paradox and toxic aldehyde. Eur. Heart J. 32, 1025-1038.   DOI   ScienceOn
17 Vezina, C., Kudelski, A. and Sehgal, S. N. (1975) Rapamycin (AY-22,989), a new antifungal antibiotic. J. Antibiot. 28, 721-726.   DOI
18 Hein, S., Arnon, E., Kostin, S., Schonburg, M., Elsasser, A., Polyakova, V., Bauer, E. P., Klovekorn, W. P. and Schaper, J. (2003) Progression from compensated hypertrophy to failure in the pressure-overloaded human heart: structural deterioration and compensatory mechanisms. Circulation 107, 984-991.   DOI   ScienceOn
19 Lekli, I., Ray, D., Mukherjee, S., Gurusamy, N., Ahsan, M. K., Juhasz, B., Bak, I., Tosaki, A., Gherghiceanu, M., Popescu, L. M. and Das, D. K. (2010) Co-ordinated autophagy with resveratrol and γ-tocotrienol confers synergetic cardioprotection. J. Cell Mol. Med. 14, 2506-2518.   DOI   ScienceOn
20 Zhang, Z., Yu, B. and Tao, G. Z. (2009) Apelin protects against cardiomyocyte apoptosis induced by glucose deprivation. Chin. Med. J. (Engl). 122, 2360-2365.
21 Gurusamy, N., Lekli, I., Mukherjee, S., Ray, D., Ahsan, M. K., Gherghiceanu, M., Popescu, L. M., Das, D. K. (2010) Cardioprotection by resveratrol: a novel mechanism via autophagy involving the mTORC2 pathway. Cardiovasc. Res. 86, 103-112.   DOI   ScienceOn
22 Trotman, L. C., Alimonti, A., Scaglioni, P. P., Koutcher, J. A., Cordon, C. C. and Pandolfi, P. P. (2006) Identification of a tumour suppressor network opposing nuclear Akt function. Nature 441, 523-527.   DOI   ScienceOn
23 Ayuso, M. I., Hernandez, J. M., Martin, M. E., Salinas, M. and Alcazar, A. (2010) New hierarchical phosphorylation pathway of the translational repressor elF4E-binding protein 1 (4E-BP1) in ischemia-reperfusion stress. J. Biol. Chem. 285, 34355-34363.   DOI   ScienceOn
24 Oudit, G. Y. and Penninger, J. M. (2009) Cardiac Regulation by Phosphoinositide 3-kinases and PTEN. Cardiovasc. Res. 250-260.
25 Koh, P. O. (2008) Melatonin prevents ischemic brain injury through activation of the mTOR/p70S6 kinase signaling pathway. Neurosci. Lett. 444, 74-78.   DOI   ScienceOn
26 Balasubramanian, S., Johnston, R. K., Moschella, P. C., Mani, S. K., Tuxworth, W. J., Jr. and Kuppuswamy, D. (2009) mTOR in growth and protection of hypertrophying myocardium. Cardiovasc. Hematol. Agents Med. Chem. 7, 52-63.   DOI
27 Jonassen, A. K., Sack, M. N., Mjos, O. D. and Yellon, D. M. (2001) Myocardial protection by insulin at reperfusion requires early administration and is mediated via Akt and p70s6 kinase cellsurvival signaling. Circ. Res. 89, 1191-1198.   DOI   ScienceOn
28 Lyons, W. E., George, E. B., Dawson, T. M., Steiner, J. P. and Snyder, S. H. (1994) Immunosuppressant FK506 promotes neurite outgrowth in cultures of PC12 cells and sensory gangli. Proc. Natl. Acad. Sci. U.S.A. 91, 3191-3195.   DOI   ScienceOn
29 Steiner, J. P., Connolly, M. A., Valentine, H. L., Hamilton, G. S., Dawson, T. M., Hester, L. and Snyder, S. H. (1997) Neurotropic actions of nonimmuosuppressive analogues of immunosuppressive drugs FK506, rapamycin, and cyclosporine A. Nat. Med. 3, 421-428.   DOI   ScienceOn
30 Erlich, S., Alexandrovich, A., Shohami, E. and Pinkas K. R. (2007) Rapamycin is a neuroprotective treatment for traumatic brain injury. Neurobiol. Dis. 26, 86-93.   DOI   ScienceOn
31 Ruan, B., Pong, K., Jow, F., Bowlby, M., Crozier, R. A., Liu, D., Liang, S., Chen, Y., Mercado, M. L., Feng, X., Bennett, F., von, S. D., McDonald, L., Zeleska, M. M., Wood, A., Reinhart, P. H., Magolda, R. L., Skotnicki, J., Pangalos, M. N., Koehn, F. E. Carter, G. T., Abou, G. M. and Graziani, E. l. (2008) Binding of rapamycin analogs to calcium channels and FKBP52 contributes to their neuroprotective activities. Proc. Natl. Acad. Sci. U.S.A. 105, 33-38.   DOI   ScienceOn
32 Huang, J., Dibble, C. C., Matsuzaki, M. and Manning, B. D. (2008) The TSC1-TSC2 complex is required for proper activation of mTOR complex 2. Mol. Cell Biol. 28, 4104-4115.   DOI   ScienceOn
33 Carloni, S., Girelli, S., Scopa, C., Buonocore, G., Longini, M. and Balduini, W. (2010) Activation of autophagy and Akt/CREB signaling play an equivalent role in the neuroprotective effect of rapamycin in neonatal hypoxia-ischemia. Autophagy. 6, 366-377.   DOI
34 Hanada, M., Feng, J. and Hemmings, B. A. (2004) Structure, regulation and function of PKB/AKT-a major therapeutic target. Biochim. Biophys. Acta. 1697, 3-16.   DOI   ScienceOn
35 Jacinto, E., Facchinetti, V., Liu, D., Soto, N., Wei, S., Jung, S. Y., Huang, Q., Qin, J. and Su, B. (2006) SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell 127, 125-137.   DOI   ScienceOn
36 Huang, J., Wu, S., Wu, C. L. and Manning, B. D. (2009) Signaling events downstream of mammalian target of rapamycin complex 2 are attenuated in cells and tumors deficient for the tuberous sclerosis complex tumor suppressors. Cancer Res. 69, 6107-6114.
37 Wullschleger, S., Loewith, R. and Hall, M. N. (2006) TOR signaling in growth and metabolism. Cell 124, 471-484.   DOI   ScienceOn
38 Shen, W. H., Chen, Z., Shi, S., Chen, H., Zhu, W., Penner A., Bu, G., Li, W., Boyle, D. W., Rubart, M., Field, L. J., Abraham, R., Liechty, E. A. and Shou, W. (2008) Cardiac restricted overexpression of kinase-dead mammalian target of rapamycin (mTOR) mutant impairs the mTOR-mediated signaling and cardiac function. J. Biol. Chem. 283, 13842-13849.   DOI   ScienceOn
39 Tong, H., Chen, W., Steenbergen, C. and Murphy, E. (2000) Ischemic preconditioning activates phosphatidylinositol- 3-kinase upstream of protein kinase C. Circ. Res. 87, 309-315.   DOI   ScienceOn
40 Khan, S., Salloum, F., Das, A., Xi, L., Vetrovec, G. W. and Kukreja, R. C. (2006) Rapamycin confers preconditioning- like protection against ischemia-reperfusion injury in isolated mouse heart and cardiomyocytes. J. Mol. Cell Cardiol. 41, 256-264.   DOI   ScienceOn
41 Murphy, E. and Steenbergen, C. (2008) Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol. Rev. 88, 581-609.   DOI   ScienceOn
42 Tokunaga, C., Yoshino, K. and Yonezawa, K. (2004) mTOR integrates amino acid- and energy-sensing pathways. Biochem. Biophys. Res. Commun. 313, 443-446.   DOI   ScienceOn
43 Ma, X. (2009) Molecular mechanisms of mTOR-mediated translational control. Nat. Rev. Mol. Cell Biol. 10, 307-318.   DOI   ScienceOn
44 Huang, J. and Manning, B. D. (2008) The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. Biochem. J. 412, 179-190.   DOI   ScienceOn
45 Manning, B. D. and Cantley, L. C. (2007) AKT/PKB signaling: navigating downstream. Cell 129, 1261-1274.   DOI   ScienceOn
46 Zhang, H., Bajraszewski, N., Wu, E., Wang, H., Moseman, A. P., Dabora, S. L., Griffin, J. D. and Kwiatkowski, D. J. (2007) PDGFRs are critical for PI3K/Akt activation and negatively regulated by mTOR. J. Clin. Invest. 117, 730-738.   DOI   ScienceOn
47 Inoki, K., Li, Y., Zhu, T., Wu, J. and Guan, K. L. (2002) TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat. Cell Biol. 4, 648-657.   DOI   ScienceOn
48 Kovacina, K. S., Park, G. Y., Bae, S. S., Guzzetta, A. W., Schaefer, E., Birnbaum, M. J. and Roth, R. A. (2003) Identification of a proline-rich Akt substrate as a 14-3-3 binding partner. J. Biol. Chem. 278, 10189-10194.   DOI   ScienceOn
49 Vander, H. E., Lee, S. I., Bandhakavi, S., Griffin, T. J. and Kim, D. H. (2007) Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat. Cell Biol. 9, 316-323.   DOI   ScienceOn
50 Huang, B. and Porter, G. (2005) Expression of proline-rich Akt-substrate PRAS40 in cell survival pathway and carcinogenesis. Acta. Pharmacol. Sin. 26, 1253-1258.   DOI   ScienceOn
51 Sancak, Y., Thoreen, C. C., Peterson, T. R., Lindquist, R. A., Kang, S. A., Spooner, E., Carr, S. A. and Sabatini, D. M. (2007) PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol. Cell 25, 903-915.   DOI   ScienceOn
52 Sarbassov, D. D., Guertin, D. A., Ali, S. M. and Sabatini, D. M. (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307, 1098-1101.   DOI   ScienceOn
53 Wang, C. Y., Kim, H. H., Hiroi, Y., Sawada, N., Salomone, S., Benjamin, L. E., Walsh, K., Moskowitz, M. A. and Liao, J. K. (2009) Obesity increases vascular senescence and susceptibility to ischemic injury through chronic activation of Akt and mTOR. Sci. Signal. 2, ra11.   DOI   ScienceOn
54 Peterson, T. R., Laplante, M., Thoreen, C. C., Sancak, Y., Kang, S. A., Kuehl, W. M., Gray, N. S. and Sabatini, D. M. (2009) DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 137, 873-886.   DOI   ScienceOn
55 Guertin, D. A. and Sabatini, D. M. (2007) Defining the Role of mTOR in Cancer. Cancer Cell 12, 9-22.   DOI   ScienceOn
56 Dumont, F. J., Staruch, M. J., Koprak, S. L., Melino, M. R. and Sigal, N. H. (1990) Distinct mechanisms of suppression of murine T cell activation by the related macrolides FK-506 and rapamycin. J. Immunol. 144, 251-258.
57 Bhaskar, P. T. and Hay, N. (2007) The two TORCs and Akt. Dev. Cell. 12, 487-502.   DOI   ScienceOn
58 Loewith, R., Jacinto, E., Wullschleger, S., Lorberg, A., Crespo, J. L., Bonenfant, D., Oppliger, W., Jenoe, P. and Hall, M. N. (2002) Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol. Cell 10, 457-468.   DOI   ScienceOn
59 Guertin, D. A., Stevens, D. M., Thoreen, C. C., Burds, A. A., Kalaany, N. Y., Moffat, J., Brown, M., Fitzgerald, K. J. and Sabatini, D. M. (2006) Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev. Cell 11, 859-871.   DOI   ScienceOn