• 제목/요약/키워드: series inductance

검색결과 158건 처리시간 0.025초

가전용 커패시터의 소손원인 규명 및 발열 메커니즘 해석 (Examination of the Cause of Damage to Capacitors for Home Appliances and Analysis of the Heat Generation Mechanism)

  • 박형기;최충석
    • 한국안전학회지
    • /
    • 제26권6호
    • /
    • pp.13-19
    • /
    • 2011
  • The purpose of this study is to examine the cause of damage to electrolytic capacitors and to present the heat generation mechanism in order to prevent the occurrence of similar problems. From the analysis results of electrolytic capacitors collected from accident sites, the fire causing area can be limited to the primary power supply for the initial accident. From the tests performed by applying overvoltage, surge, etc., it is thought that the fuse, varistor, etc., are not directly related to the accidents that occurred. The analysis of the characteristics using a switching regulator showed that the charge and discharge characteristics fell short of standard values. In addition, it is thought that heated electrolytic capacitors caused thermal stress to nearby resistances, elements, etc. It can be seen that the heat generation is governed by the over-ripple current, application of AC overvoltage, surge input, internal temperature increase, defective airtightness, etc. Therefore, when designing an electrolytic capacitor, it is necessary to comprehensively consider the correct polarity arrangement, appropriate voltage application, correct connection of equivalent series resistance(ESR) and equivalent series inductance(SEL), rapid charge and discharge control, sufficient margin of dielectric tangent, etc.

전송로의 직렬리앤턴스 산정 시 Carson 모델의 적용범위 검토 (Study of the Applicability of the Carson Line Model for the Series Reactance Calculation of the Power Feeding Lines with no Ground Return)

  • 정상기;권삼영;창상훈;장동욱
    • 전기학회논문지
    • /
    • 제58권2호
    • /
    • pp.225-231
    • /
    • 2009
  • In this paper, it is shown that Carson's equation can still be applied for the calculation of the series reactance of transmission lines with no ground return current as well as the one with ground return. It is proved in the following method. First two voltage drop equations for three-phase three wire transmission line are derived, one without considering ground return and the other using Carson's equation. The impedance matrix of the two equations are different from each other. But if we put the condition of zero ground current, $I_a+I_b+I_c=0$, those two equations becomes the identical equations. Therefore even a transmission line is not grounded, its line parameters can still be obtained using the Carson's equation. It has been confused whether or not Carson's equation can be used for an ungrounded system. It is because where ever Carson's equation is shown in the book, it also says that the system has ground return current paths as a premise. It is also verified with EMTP studies on the test circuit.

AC 전기철도 급전선 선로정수 산정시 Carson 모델 적용 검토 (Applicability Study of the Carson Model for the calculation of the series inductance of the power feeding lines in AC traction system)

  • 정상기;권삼영;창상훈;장동욱
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.169-178
    • /
    • 2008
  • In this paper, it is shown that Carson's equation can still be applied for the calculation of the series reactance of transmission lines with no ground return current as well as the one with ground return. It is proved in the following method. First two voltage drop equations for three-phase three wire transmission line are derived, one without considering ground return and the other using Carson's equation. The impedance matrix of the two equations are different from each other. But if we put the condition of zero ground current, $I_a+I_b+I_c=0$, those two equations becomes the identical equations. Therefore even a transmission line is not grounded, its line parameters can still be obtained using the Carson's equation. It has been confused whether or not Carson's equation can be used for an ungrounded system. It is because where ever Carson's equation is shown in the book, it also says that the system has ground return current paths as a premise. It is also verified with EMTP studies on the test circuit.

  • PDF

고전압 펄스 발생 장치의 회로에 관한 이론적 연구 (Theoretical Study of the Circuits for Device of the High Voltage Pulse Generator)

  • 김영주
    • 조명전기설비학회논문지
    • /
    • 제27권1호
    • /
    • pp.99-108
    • /
    • 2013
  • The high-voltage pulse generator is consist of transformers of fundamental wave and harmonic waves, and shunt capacitances. The pulse has the fundamental wave and the harmonic waves that have been increased as a series circuit by the transformers to make high voltage pulse. This paper shows that pulse generator circuit is analyzed using Miller's theorem and network theory(ABCD Matrix) and simulated in frequency and time domain using Matlab program. The output voltage of pulse were obtained to 2.5kHz, 1.8kV. Output pulse voltage increases as $L_m$ increases in low voltage circuit. In high voltage circuit, outer capacitors are related to frequency band pass characteristics.

Hybrid Planar Inverted-F Antenna with a T-Shaped Slot on the Ground Plane

  • Jeon, Sin-Hyung;Choi, Hyeng-Cheul;Kim, Hyeong-Dong
    • ETRI Journal
    • /
    • 제31권5호
    • /
    • pp.616-618
    • /
    • 2009
  • In this letter, a novel hybrid planar inverted-F antenna (PIFA) with a T-shaped slot on the ground plane is proposed. The loop structure formed by the feed line and shorting pin can be operated as a series and shunt inductance for the PIFA and the T-shaped slot antenna, respectively. The PIFA operates at a frequency of 1.75 GHz, while the T-shaped slot on the ground plane operates at 2.4 GHz by the same voltage feeding source. The height of the PIFA is 6.5 mm, and the size of an upper patch is designed to be 30 mm${\times}$16 mm. The measured relative impedance bandwidth of the PIFA and the T-shaped slot are about 12% and 21%, respectively. In addition, good antenna performance was achieved.

직렬연결된 두 코일의 자기결합을 이용한 초전도 사고전류제한기의 사고전류제한 특성 컴퓨터 시뮬레이션 분석 (Computer Simulation Analysis on Fault Current Limiting Characteristics of SFCL using Magnetic Coupling of Two Coils with Series Connection)

  • 임성훈;안재민;김진석;문종필;김재철
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2007년도 추계학술대회 논문집
    • /
    • pp.213-216
    • /
    • 2007
  • The computer simulation for the fault current limiting characteristics of the superconducting fault current limiter (SFCL) using the magnetic coupling of two coils was performed. The magnetic fluxes generated from two coils were canceled out during a normal time. However, the resistance generation of high-$T_c$ superconducting (HTSC) element after a fault occurrence keeps up the magnetic fluxes of two coils and contributes to the fault current limiting operation. Through the computer simulation for the fault current limiting characteristics based on its electrical equivalent circuit, its operational current and the limiting impedance could be improved by adjusting the inductance ratio between two coils.

  • PDF

전력계통의 전자과도현상에 관한 연구 (A Study on the Electromagnetic Transients in A Power System)

  • 김경철;강창원;이일무
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2001년도 학술대회논문집
    • /
    • pp.59-64
    • /
    • 2001
  • Transient in an electrical system are generated by lightning and switching. This paper presents analysis of switching and lightning surge, and means of limiting the voltage magnification transient for high voltage power systems by using EDSA's EMTAP software package. One means of limiting the voltage magnification transient is to convert the end-user power factor correction banks to harmonic filters. An inductance in series with the power factor correction bank was used to decrease the transient voltage at the customer bus to acceptable levees. The interception of the impulse from the phase wire is fairly straight forward by properly installed surge arresters. The simulation shows that the addition of the surge arrester at the customer location can achieve a substantial reduction of the transient magnitude.

  • PDF

코일의 자기결합을 이용한 초전도 사고전류제한기의 동작특성 (Operational Characteristics of SFCL using Magnetic Coupling of Coils)

  • 임성훈;김재철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.68-70
    • /
    • 2007
  • The operational characteristics of superconducting fault current limiter (SFCL) using magnetic coupling of coils were investigated. This SFCL consists of a high-Tc superconducting (HTSC) element and two coils with series or parallel connection on the same iron. This SFCL has the merit that the operational current of SFCL can be increased higher than the critical current of the superconducting element by adjusting the inductance ratio between two coils. To confirm its operation, the circuit for the fault simulation was constructed. From the measured voltage and current of the SFCL, it was confirmed that the resistance of HTSC element comprising this SFCL increased more than that of HTSC element's independent operation.

  • PDF

고전압 펄스 발생 장치의 특성에 관한 시뮬레이션 연구 (Simulation Study of Characteristics for Device of the High Voltage Pulse Generator)

  • 김영주;신주희
    • 조명전기설비학회논문지
    • /
    • 제26권12호
    • /
    • pp.80-86
    • /
    • 2012
  • The high-voltage pulse generator is consist of transformers of fundamental wave and harmonic waves, and shunt capacitances. The pulse has the fundamental wave and the harmonic waves that have been increased as a series circuit by the transformers to make high voltage pulse. This paper shows the high-voltage pulse generator simulation using a circuit program with experiment data. In the equivalent circuit, magnetized inductances and loss resistances which affect output voltage, have been obtained. The output capacitor circuits have characteristics of band pass. The output voltages of the pulse width 50% and 25%(PWM) were obtained. The output of the high-voltage pulse generator is 2.5kHz, 1.8kV.

마이크로그리드용 순간정전발생기의 순간정전모드 동작시 전류특성 해석 (Analysis of current characteristics of outage generator for microgrid in outage mode operation)

  • 이영호;민병호;노의철;김인동;전태원;김흥근
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2008년도 하계학술대회 논문집
    • /
    • pp.130-132
    • /
    • 2008
  • This paper describes the current characteristics of outage generator for microgrid in outage mode operation. The outage can be generated with 3-phase voltage disturbance generator. The STS current becomes very huge during the first cycle of the outage, and the magnitude of the current depends on the time impedance, series transformer leakage inductance, interfacing reactor of PCS, and the maximum allowable PCS output current. The current and load voltage waveform are analysed through simulation.

  • PDF