• Title/Summary/Keyword: sequential digital logic

Search Result 14, Processing Time 0.016 seconds

Low-Power Frequency Offset Synchronization Block Design and Implementation using Pipeline CORDIC (Pipeline CORDIC을 이용한 저전력 주파수 옵셋 동기화기 설계 및 구현)

  • Ha, Jun-Hyung;Jung, Yo-Sung;Cho, Yong-Hoon;Jang, Young-Beom
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.10
    • /
    • pp.49-56
    • /
    • 2010
  • In this paper, a low-power frequency offset synchronization structure using CORDIC algorithm is proposed. Main blocks of frequency offset synchronization are estimation and compensation block. In the proposed frequency offset estimation block, implementation area is reduced by using sequential CORDIC, and throughput is accelerated by using 2 step CORDIC. In the proposed frequency offset compensation block, pipeline CORDIC is utilized for area reduction and high speed processing. Through MatLab simulation, function for proposed structure is verified. Proposed frequency offset synchronization structure is implemented by Verilog-HDL coding and implementation area is estimated by Synopsys logic synthesis tool.

Real-Time Fault Detection in Discrete Manufacturing Systems Via LSTM Model based on PLC Digital Control Signals (PLC 디지털 제어 신호를 통한 LSTM기반의 이산 생산 공정의 실시간 고장 상태 감지)

  • Song, Yong-Uk;Baek, Sujeong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.2
    • /
    • pp.115-123
    • /
    • 2021
  • A lot of sensor and control signals is generated by an industrial controller and related internet-of-things in discrete manufacturing system. The acquired signals are such records indicating whether several process operations have been correctly conducted or not in the system, therefore they are usually composed of binary numbers. For example, once a certain sensor turns on, the corresponding value is changed from 0 to 1, and it means the process is finished the previous operation and ready to conduct next operation. If an actuator starts to move, the corresponding value is changed from 0 to 1 and it indicates the corresponding operation is been conducting. Because traditional fault detection approaches are generally conducted with analog sensor signals and the signals show stationary during normal operation states, it is not simple to identify whether the manufacturing process works properly via conventional fault detection methods. However, digital control signals collected from a programmable logic controller continuously vary during normal process operation in order to show inherent sequence information which indicates the conducting operation tasks. Therefore, in this research, it is proposed to a recurrent neural network-based fault detection approach for considering sequential patterns in normal states of the manufacturing process. Using the constructed long short-term memory based fault detection, it is possible to predict the next control signals and detect faulty states by compared the predicted and real control signals in real-time. We validated and verified the proposed fault detection methods using digital control signals which are collected from a laser marking process, and the method provide good detection performance only using binary values.

Design Challenges and Solutions for Ultra-High-Density Monolithic 3D ICs

  • Panth, Shreepad;Samal, Sandeep;Yu, Yun Seop;Lim, Sung Kyu
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.3
    • /
    • pp.186-192
    • /
    • 2014
  • Monolithic three-dimensional integrated chips (3D ICs) are an emerging technology that offers an integration density that is some orders of magnitude higher than the conventional through-silicon-via (TSV)-based 3D ICs. This is due to a sequential integration process that enables extremely small monolithic inter-tier vias (MIVs). For a monolithic 3D memory, we first explore the static random-access memory (SRAM) design. Next, for digital logic, we explore several design styles. The first is transistor-level, which is a design style unique to monolithic 3D ICs that are enabled by the ultra-high-density of MIVs. We also explore gate-level and block-level design styles, which are available for TSV-based 3D ICs. For each of these design styles, we present techniques to obtain the graphic database system (GDS) layouts, and perform a signoff-quality performance and power analysis. We also discuss various challenges facing monolithic 3D ICs, such as achieving 50% footprint reduction over two-dimensional (2D) ICs, routing congestion, power delivery network design, and thermal issues. Finally, we present design techniques to overcome these challenges.

Trace-Back Viterbi Decoder with Sequential State Transition Control (순서적 역방향 상태천이 제어에 의한 역추적 비터비 디코더)

  • 정차근
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.11
    • /
    • pp.51-62
    • /
    • 2003
  • This paper presents a novel survivor memeory management and decoding techniques with sequential backward state transition control in the trace back Viterbi decoder. The Viterbi algorithm is an maximum likelihood decoding scheme to estimate the likelihood of encoder state for channel error detection and correction. This scheme is applied to a broad range of digital communication such as intersymbol interference removing and channel equalization. In order to achieve the area-efficiency VLSI chip design with high throughput in the Viterbi decoder in which recursive operation is implied, more research is required to obtain a simple systematic parallel ACS architecture and surviver memory management. As a method of solution to the problem, this paper addresses a progressive decoding algorithm with sequential backward state transition control in the trace back Viterbi decoder. Compared to the conventional trace back decoding techniques, the required total memory can be greatly reduced in the proposed method. Furthermore, the proposed method can be implemented with a simple pipelined structure with systolic array type architecture. The implementation of the peripheral logic circuit for the control of memory access is not required, and memory access bandwidth can be reduced Therefore, the proposed method has characteristics of high area-efficiency and low power consumption with high throughput. Finally, the examples of decoding results for the received data with channel noise and application result are provided to evaluate the efficiency of the proposed method.