• Title/Summary/Keyword: sequence length

Search Result 1,234, Processing Time 0.031 seconds

ermK Leader Peptide : Amino Acid Sequence Critical for Induction by Erythromycin

  • Kwon, Ae-Ran;Min, Yu-Hong;Yoon, Eun-Jeong;Kim, Jung-A;Shim, Mi-Ja;Choi, Eung-Chil
    • Archives of Pharmacal Research
    • /
    • v.29 no.12
    • /
    • pp.1154-1157
    • /
    • 2006
  • The ermK gene from Bacillus lichenformis encodes an inducible rRNA methylase that confers resistance to the macrolide-lincosamide-streptogramin B antibiotics. The ermK mRNA leader sequence has a total length of 357 nucleotides and encodes a 14-amino acid leader peptide together with its ribosome binding site. The secondary structure of ermK leader mRNA and a leader peptide sequence have been reported as the elements that control expression. In this study, the contribution of specific leader peptide amino acid residues to induction of ermK was studied using the PCR-based megaprimer mutation method. ermK methylases with altered leader peptide codons were translationally fused to E. coli ${\beta}-galactosidase$ reporter gene. The deletion of the codons for Thr-2 through Ser-4 reduced inducibility by erythromycin, whereas that for Thr-2 and His-3 was not. The replacement of the individual codons for Ser-4, Met-5 and Arg-6 with termination codon led to loss of inducibility, but stop mutation of codon Phe-9 restored inducibility by erythromycin. Collectively, these findings suggest that the codons for residue 4, 5 and 6 comprise the critical region for induction. The stop mutation at Leu-7 expressed constitutively ermK gene. Thus, ribosome stalling at codon 7 appears to be important for ermK induction.

Identification of DNA Variations Using AFLP and SSR Markers in Soybean Somaclonal Variants

  • Lee, Suk-Ha;Jung, Hyun-Soo;Kyujung Van;Kim, Moon-Young
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.1
    • /
    • pp.69-72
    • /
    • 2004
  • Somaclonal variation, defined as phenotypic and genetic variations among regenerated plants from a parental plant, could be caused by changes in chromosome structure, single gene mutation, cytoplasm genetic mutation, insertion of transposable elements, and DNA methylation during plant regeneration. The objective of this study was to evaluate DNA variations among somaclonal variants from the cotyledonary node culture in soybean. A total of 61 soybean somaclones including seven $\textrm{R}_1$ lines and seven $\textrm{R}_2$ lines from Iksannamulkong as well as 27 $\textrm{R}_1$ lines and 20 $\textrm{R}_2$ lines from Jinju 1 were regenerated by organogenesis from the soybean cotyledonary node culture system. Field evaluation revealed no phenotypic difference in major agronomic traits between somaclonal variants and their wild types. AFLP and SSR analyses were performed to detect variations at the DNA level among somaclonal variants of two varieties. Based on AFLP analysis using 36 primer sets, 17 of 892 bands were polymorphic between Iksannamulkong and its somaclonal variants and 11 of 887 bands were polymorphic between Jinju 1 and its somaclonal variants, indicating the presence of DNA sequence change during plant regeneration. Using 36 SSR markers, two polymorphic SSR markers were detected between Iksannamulkong and its somaclonal variants. Sequence comparison amplified with the primers flanking Satt545 showed four additional stretches of ATT repeat in the variant. This suggests that variation at the DNA level between somaclonal variants and their wild types could provide basis for inducing mutation via plant regeneration and broadening crop genetic diversity.

Sequence Characterization, Expression Profile, Chromosomal Localization and Polymorphism of the Porcine SMPX Gene

  • Guan, H.P.;Fan, B.;Li, K.;Zhu, M.J.;Yerle, M.;Liu, Bang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.7
    • /
    • pp.931-937
    • /
    • 2006
  • The full-length cDNA of the porcine SMPX gene was obtained by the rapid amplification of cDNA ends (RACE). The nucleotide sequences and the predicted protein sequences share high sequence identity with both human and mouse. The promoter of SMPX was sequenced and then analyzed to find the promoter binding sites. The reverse transcriptase-polymerase chain reaction (RT-PCR) revealed that SMPX has a high level of expression in heart and skeletal muscle, a very low expression in lung and spleen and no expression in liver, kidney, fat and brain. Moreover, SMPX has a differential expression level in skeletal muscle, the expression in 65-day embryos being higher than other stages. The porcine SMPX was mapped to SSCXp24 by using a somatic cell hybrid panel (SCHP) and was found closely linked to SW1903 using the radiation hybrid panel IMpRH. An A/G single nucleotide polymorphism (PCR-RFLP) in the 3'-untranslated region (3'-UTR) was detected in eight breeds. The analysis of allele frequency distribution showed that introduced pig breeds (Duroc and Large White) have a higher frequency of allele A while in the Chinese indigenous pig breeds (Qingping pig, Lantang pig, YushanBlack pig, Large Black-White pig, Small Meishan) have a higher frequencies of allele G. The association analysis using an experimental population (188 pigs), which included two cross-bred groups and three pure-blood groups, suggested that the SNP genotype was associated with intramuscular fat content.

The Efficacy of Enhanced Growth by Ectopic Expression of Ghrelin and Its Variants Using Injectable Myogenic Vectors

  • Xie, Q.F.;Wu, C.X.;Meng, Q.Y.;Li, N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.1
    • /
    • pp.146-152
    • /
    • 2004
  • Ghrelin is an acylated peptide recently identified as the endogenous ligand for the growth hormone (GH) secretagogues receptor 1a (GHS-R1a) and is involved in a novel system for regulating GH release. To understand the long-term effects of ghrelin, here we constructed six myogenic expression vectors containing the cDNA of swine mature ghrelin (pGEM-wt-sGhln, pGEM-wt-hGhln), ghrelin mutant of $Ser^3$ with $Trp^3$ (pGEM-mt-sGhln, pGEM-mt-hGhln) and truncated ghrelin derivative (pGEM-tmtsGhln, pGEM-tmt-hGhln) encompassing the first 7 residues of ghrelin (including $Ser^3$ substituted with $Trp^3$) and adding a basic amino acid, Lys (K) in the C-terminus. The constructs, pGEM-wt-sGhln, pGEM-mt-sGhln and pGEM-tmt-sGhln were linked with the ghrelin leader sequence, while the pGEM-wt-hGhln, pGEM-mt-hGhln and pGEM-tmt-hGhln were linked with a leader sequence from the human growth hormone releasing hormone (hGHRH). Intramuscular injection of 200 ${\mu}g$ pGEM-wt-sGhln or pGEM-tmt-sGhln augmented growth over 3 weeks in normal rats and peaked at day 21 or 14 post-injection respectively, whose body weight gains were on average approximately 6% or 19% heavier over controls. However, other injectable vectors had no such enhanced growth effects. Our results suggested that the efficacy of the ghrelin leader sequence was more effective than that of hGHRH in our system. Moreover, the results indicated that skeletal muscle might have the ability to posttranslationally modify the in vivo expressed ghrelin. And the most strikingly, the short ghrelin analog seems to mimic the biological effects more efficiently when compared with the full-length ghrelin.

Characterization of porcine cytokine inducible SH2-containing protein gene and its association with piglet diarrhea traits

  • Niu, Buyue;Guo, Dongchun;Liu, Zhiran;Han, Xiaofei;Wang, Xibiao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.12
    • /
    • pp.1689-1695
    • /
    • 2017
  • Objective: The cytokine inducible SH2-containing protein (CISH), which might play a role in porcine intestine immune responses, was one of the promising candidate genes for piglet anti-disease traits. An experiment was conducted to characterize the porcine CISH (pCISH) gene and to evaluate its genetic effects on pig anti-disease breeding. Methods: Both reverse transcription polymerase chain reaction (RT-PCR) and PCR were performed to obtain the sequence of pCISH gene. A pEGFP-C1-CISH vector was constructed and transfected into PK-15 cells to analysis the distribution of pCISH. The sequences of individuals were compared with each other to find the polymorphisms in pCISH gene. The association analysis was performed in Min pigs and Landrace pigs to evaluate the genetic effects on piglet diarrhea traits. Results: In the present research, the coding sequence and genomic sequence of pCISH gene was obtained. Porcine CISH was mainly localized in cytoplasm. TaqI and HaeIII PCR restriction fragment length polymorphism (RFLP) assays were established to detect single nucleotide polymorphisms (SNPs); A-1575G in promoter region and A2497C in Intron1, respectively. Association studies indicated that SNP A-1575G was significantly associated with diarrhea index of Min piglets (p<0.05) and SNP A2497C was significantly associated with the diarrhea trait of both Min pig and Landrace piglets (p<0.05). Conclusion: This study suggested that the pCISH gene might be a novel candidate gene for pig anti-disease traits, and further studies are needed to confirm the results of this preliminary research.

Null Allele in the D18S51 Locus Responsible for False Homozygosities and Discrepancies in Forensic STR Analysis

  • Eom, Yong-Bin
    • Biomedical Science Letters
    • /
    • v.17 no.2
    • /
    • pp.151-155
    • /
    • 2011
  • Short tandem repeats (STRs) loci are the genetic markers used for forensic human identity test. With multiplex polymerase chain reaction (PCR) assays, STRs are examined and measured PCR product length relative to sequenced allelic ladders. In the repeat region and the flanking region of the commonly-used STR may have DNA sequence variation. A mismatch due to sequence variation in the DNA template may cause allele drop-out (i.e., a "null" or "silent" allele) when it falls within PCR primer binding sites. The STR markers were co-amplified in a single reaction by using commercial PowerPlex$^{(R)}$ 16 system and AmpFlSTR$^{(R)}$ Identifiler$^{(R)}$ PCR amplification kits. Separation of the PCR products and fluorescence detection were performed by ABI PRISM$^{(R)}$ 3100 Genetic Analyzer with capillary electrophoresis. The GeneMapper$^{TM}$ ID software were used for size calling and analysis of STR profiles. Here, this study described a forensic human identity test in which allelic drop-out occurred in the STR system D18S51. During the course of human identity test, two samples with a homozygous (16, 16 and 21, 21) genotype at D18S51 locus were discovered using the PowerPlex$^{(R)}$ 16 system. The loss of alleles was confirmed when the samples were amplified using AmpFlSTR$^{(R)}$ Identifiler$^{(R)}$ PCR amplification kit and resulted in a heterozygous (16, 20 and 20, 21) genotype at this locus each other. This discrepancy results suggest that appropriate measures should be taken for database comparisons and that allele should be further investigated by sequence analysis and be reported to the forensic community.

Sequence Structure and Thermal Property of Poly(butylene terephthalate) (PBT)/p-Acetoxybenzoic Acid (ABA) Copolymers Obtained Through Melt Trans-esterification Reaction (용융 에스테르 교환반응에 의해 제조된 폴리부틸렌테레프탈레이트/파라아세톡시벤조산 공중합체의 서열구조와 열적 성질)

  • 김도경;박수영;박종래
    • Polymer(Korea)
    • /
    • v.24 no.1
    • /
    • pp.58-64
    • /
    • 2000
  • Poly(butylene terephthalate-co-oxybenzoate) (PBOT ) was synthesized by melt trans-esterification of poly(butylene terephthalate)(PBT) and p-acetoxybensoic acid (ABA) at 250, 260, and 27$0^{\circ}C$ with the compositions of PBT/ABA of 4/6, 5/5, 6/4. The sequence analysis of PBOT with a $^1$H FT-NMR indicated that the number of consecutive oxybenzoate units ranges from 1.2 to 1.5, which is larger than that of the corresponding poly(ethylene terephthalate)(PET)/ABA (PEOT) obtained at the same reaction conditions as the PBOT. The difference in the block length influenced the thermal degradation behavior: Polyoxybezoate (POB), PBT and PEOT showed one-step degradation whereas PBOT exhibited two-step degradation. The results suggested that PBOT consisted of three phases of PBT-rich phase, random phase of PBT and ABA, and ABA-rich phase.

  • PDF

Sequence Analysis of E2 Glycoprotein from Indian Isolate of Classical Swine Fever Virus (CSFV)

  • Bajwa, Mehak;Verma, Ramneek;Deka, Dipak;Dhol, Gagandeep Singh;Barman, Nagendra Nath
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.1
    • /
    • pp.22-30
    • /
    • 2015
  • CSF is a major concern for the swine industry, representing currently the most epizootically dangerous disease to the species. Numerous CSFV isolates with various degrees of virulence have already been isolated worldwide, ranging from low virulent strains that do not result in any apparent clinical signs to highly virulent strains that cause a severe per acute hemorrhagic fever with very high mortality. The molecular epidemiology of CSFVs has proven to be an essential tool for effective disease control and the development of safe and effective vaccines. Therefore, this study cloned and sequenced local CSFV isolates, and conducted a phylogenetic analysis based on the E2 glycoprotein encoding sequences.The RNA was extracted from PK15 cell culture passaged CSFV isolates, the cDNA prepared, and the complete E2 gene amplified with a product size of 1186 bp. The gelpurified PCR product was cloned into a pGEMT easy vector and the positive clone commercially sequenced. Aligning the nucleotide (1119 bp) and amino acid (373) sequences with 29 reference strains revealed nucleotide and amino acid sequence identities of 82.60-97.80% and 88.70-98.70%, respectively, indicating a higher mutation rate of the field CSFV strains. The phylogenetic analysis based on the complete E2 amino acid sequences also revealed a reliable differentiation of all the analyzed strains into specific genetic groups and subgroups, plus the local isolate (CSFV-E2) was found to cluster with the CSFV subgroup 2.2. Thus, the full-length E2 cds proved to be most suitable for a reliable and statistically significant phylogenetic analysis of CSFV isolates.

Platform of Hot Pepper Defense Genomics: Isolation of Pathogen Responsive Genes in Hot Pepper (Capsicum annuum L.) Non-Host Resistance Against Soybean Pustule Pathogen (Xanthomonas axonopodis pv. glycines)

  • Lee, Sang-Hyeob;Park, Do-Il
    • The Plant Pathology Journal
    • /
    • v.20 no.1
    • /
    • pp.46-51
    • /
    • 2004
  • Host resistance is usually parasite-specific and is restricted to a particular pathogen races, and commonly is expressed against specific pathogen genotypes. In contrast, resistance shown by an entire plant species to a species of pathogen is known as non-host resistance. Therefore, non-host resistance is the more common and broad form of disease resistance exhibited by plants. As a first step to understand the mechanism of non-host plant defense, expressed sequence tags (EST) were generated from a hot pepper leaf cDNA library constructed from combined leaves collected at different time points after inoculation with non-host soybean pustule pathogen (Xanthomonas axonopodis pv. Glycines; Xag). To increase gene diversity, ESTs were also generated from cDNA libraries constructed from anthers and flower buds. Among a total of 10,061 ESTs, 8,525 were of sufficient quality to analyze further. Clustering analysis revealed that 55 % of all ESTs (4685) occurred only once. BLASTX analysis revealed that 74% of the ESTs had significant sequence similarity to known proteins present in the NCBI nr database. In addition, 1,265 ESTs were tentatively identified as being full-length cDNAs. Functional classification of the ESTs derived from pathogen-infected pepper leaves revealed that about 25% were disease- or defense-related genes. Furthermore, 323 (7%) ESTs were tentatively identified as being unique to hot pepper. This study represents the first analysis of sequence data from the hot pepper plant species. Although we focused on genes related to the plant defense response, our data will be useful for future comparative studies.

Variation in the Pathogenicity of Lily Isolates of Cucumber mosaic virus

  • Lee, Jin-A;Choi, Seung-Kook;Yoon, Ju-Yeon;Hong, Jin-Sung;Ryu, Ki-Hyun;Lee, Sang-Yong;Choi, Jang-Kyung
    • The Plant Pathology Journal
    • /
    • v.23 no.4
    • /
    • pp.251-259
    • /
    • 2007
  • Two isolates of Cucumber mosaic virus (CMV) originated from lily plants, named Ly2-CMV and Ly8-CMV, were compared with their pathological features in several host plants. Ly2-CMV and Ly8-CMV could induce systemic mosaic symptom in Nicotiana benthamiana, but Ly2-CMV could not systemically infect tomato and cucumber plants that have been used for CMV-propagative hosts. While Fny-CMV used as a control infected systemically the same host plants, producing typical CMV symptoms. Ly8-CMV could infect systemically two species of tobacco (N. tabacum cv. Xanthi-nc and N. glutinosa) and zucchini squash (Curcubita pepo), but Ly2 failed systemic infection on these plants. As resulted from tissue-print immunoblot assay, different kinetics of systemic movement between Ly2-CMV and Ly8-CMV were crucial for systemic infection in tobacco (cv. Xanthi-nc). Sequence analysis of full-length genome of two lily isolates showed Ly2 and Ly8 belonged to subgroup IA of CMV. The lily isolates shared overall 98 % sequence identity in their genomes. Coat protein, 3a protein, and 2b protein involved in virus movement was highly conserved in genomes of the isolates Ly2 and Ly8. Although there is the low frequency of recombinants and reassortants in natural CMV population, phylogenetic analysis of each viral protein among a number of CMV isolates suggested that genetic variation in a defined population of CMV lily isolates was stochastically produced.