DOI QR코드

DOI QR Code

Variation in the Pathogenicity of Lily Isolates of Cucumber mosaic virus

  • Lee, Jin-A (Department of Applied Biology, Kangwon National University) ;
  • Choi, Seung-Kook (National Institute of Agricultural Biotechnology, RDA) ;
  • Yoon, Ju-Yeon (Division of Environment & Life Sciences, Seoul Women's University) ;
  • Hong, Jin-Sung (Division of Environment & Life Sciences, Seoul Women's University) ;
  • Ryu, Ki-Hyun (Division of Environment & Life Sciences, Seoul Women's University) ;
  • Lee, Sang-Yong (Department of Forest Resources Protection, Kangwon National University) ;
  • Choi, Jang-Kyung (Department of Applied Biology, Kangwon National University)
  • Published : 2007.12.31

Abstract

Two isolates of Cucumber mosaic virus (CMV) originated from lily plants, named Ly2-CMV and Ly8-CMV, were compared with their pathological features in several host plants. Ly2-CMV and Ly8-CMV could induce systemic mosaic symptom in Nicotiana benthamiana, but Ly2-CMV could not systemically infect tomato and cucumber plants that have been used for CMV-propagative hosts. While Fny-CMV used as a control infected systemically the same host plants, producing typical CMV symptoms. Ly8-CMV could infect systemically two species of tobacco (N. tabacum cv. Xanthi-nc and N. glutinosa) and zucchini squash (Curcubita pepo), but Ly2 failed systemic infection on these plants. As resulted from tissue-print immunoblot assay, different kinetics of systemic movement between Ly2-CMV and Ly8-CMV were crucial for systemic infection in tobacco (cv. Xanthi-nc). Sequence analysis of full-length genome of two lily isolates showed Ly2 and Ly8 belonged to subgroup IA of CMV. The lily isolates shared overall 98 % sequence identity in their genomes. Coat protein, 3a protein, and 2b protein involved in virus movement was highly conserved in genomes of the isolates Ly2 and Ly8. Although there is the low frequency of recombinants and reassortants in natural CMV population, phylogenetic analysis of each viral protein among a number of CMV isolates suggested that genetic variation in a defined population of CMV lily isolates was stochastically produced.

Keywords

References

  1. Blackman, M. L., Boevink., P., Santa Cruz, S., Palukaitis, P. and Oparka, K. J. 1998. The movement protein of cucumber mosaic virus traffics into sieve elements in minor veins of Nicotiana clevelandii. Plant Cell 10:525-537 https://doi.org/10.1105/tpc.10.4.525
  2. Chen, Y. K., Derks, A. F. L. M., Langeveld, S., Goldbach, R. and Prins, M. 2001. High sequence conservation among cucumber mosaic virus isolates from Lily. Arch. Virol. 146: 1631-1636 https://doi.org/10.1007/s007050170085
  3. Choi, J. K., Kim, H. J., Hong, J. S., Kim, D. W. and Lee, S. Y 1998. Identification and differentiation of cucumber mosaic virus isolates in Korea. Korean J. Plant Pathol. 14:7-12
  4. Choi, S. K., Choi, J. K., Park, W. M. and Ryu, K. H. 1999. RTPCR detection and identification of three species of cucumoviruses with a genus-specific single pair of primers. J. Virol. Methods 83:67-73 https://doi.org/10.1016/S0166-0934(99)00106-8
  5. Choi, S. K., Choi, J. K. and Ryu, K. H. 2003. Involvement of RNA2 for systemic infection of Cucumber mosaic virus isolated from lily on zucchini squash. Virus Res. 97: 1-6 https://doi.org/10.1016/S0168-1702(03)00215-6
  6. Choi, S. K., Ahn, H. I., Kim, M., Choi, J. K. and Ryu, K. H. 2004. Symptom determinant as RNA3 of lily isolates of cucumber mosaic virus on zucchini squash. Plant Pathol. J. 20:212-219 https://doi.org/10.5423/PPJ.2004.20.3.212
  7. Choi, S. K., Palukatis, P., Min, B. E., Lee, M. Y., Choi, J. K. and Ryu, K. H. 2005. Cucumber mosaic virus 2a polymerase and 3a movement proteins independently affect both virus movement and the timing of symptom development in zucchini squash. J. Gen. Virol. 86:1213-1222 https://doi.org/10.1099/vir.0.80744-0
  8. Domingo, E., Escannis, C., Sevilla, N., Moya, A., Elena, S. F., Quer, J., Novella, L. and Holland, J. J. 1996. Basic concepts in RNA virus evolution. FASEB J. 10:859-864 https://doi.org/10.1096/fasebj.10.8.8666162
  9. Domingo, E. and Holland, J. J. 1997. RNA virus mutations and fitness for survival. Annu. Rev. Microbiol. 51:151-178 https://doi.org/10.1146/annurev.micro.51.1.151
  10. Hagita, T., Kodama, F. and Akai, J. 1989. The virus diseases of lily in Hokkaido. Ann. Phytopathol. Soc. Japan 55: 1-8 https://doi.org/10.3186/jjphytopath.55.1
  11. Huppert, E., Szilassy, D., Salanki, K., Diveki, Z. and Balazs, E. 2002. Heterologous movement protein strongly modifies the infection phenotype of cucumber mosaic virus. J. Virol. 76:3554-3557 https://doi.org/10.1128/JVI.76.7.3554-3557.2002
  12. Gal-On, A., Kaplan, J., Roossinck, M. J. and Palukaitis, P. 1994. The kinetics of infection of zucchini squash by cucumber mosaic virus indicates a function for RNA1 in virus movement. Virology 205:280-289 https://doi.org/10.1006/viro.1994.1644
  13. Garcfa-Arenal, F., Fraile, A. and Malpica, J. M. 2001. Variability and genetic structure of plant virus populations. Annu. Rev. Phytopathol. 39:157-186 https://doi.org/10.1146/annurev.phyto.39.1.157
  14. Gibbs, A. J., Calisher, C. H. and Garcia-Arenal, F. 1995. Molecular basis of virus evolution. Cambridge University Press, UK
  15. Jung, H. J., Ueda, S., Ryu, K. H., Lee, S. Y and Choi, J. K. 2000. A novel strain of Cucumber mosaic virus isolated from Lilium longiflorum. Plant Pathol. J. 16:306-311
  16. Kim, C. H. and Palukaitis, P. 1997. The plant defense response to cucumber mosaic virus in cowpea is elicited by the viral polymerase gene and affects virus accumulation in single cells. EMBO J. 16:4060-4068 https://doi.org/10.1093/emboj/16.13.4060
  17. Masuta, C., Seshimo, Y., Mukohara, M., Jung, H. J., Ueda, S., Ryu, K. H., and Choi, J. K. 2002. Evolutionary characterization of two lily isolates of Cucumber mosaic virus isolated in Japan and Korea. J. Gen. Plant Pathol. 68:163-168 https://doi.org/10.1007/PL00013070
  18. McGarvey, P., Tousignant, M., Geletka, L., Cellini, F. and Kaper, J M. 1995. The complete sequence of a cucumber mosaic virus from lxora that is deficient in the replication of satellite RNAs. J. Gen. Virol. 76:2257-2270 https://doi.org/10.1099/0022-1317-76-9-2257
  19. Palukaitis, P. and Garcia-Arenal, F. 2003. Cucumoviruses. Adv. Virus. Res 62: 241-323 https://doi.org/10.1016/S0065-3527(03)62005-1
  20. Palukaitis, P., Roossinck, M. J., Dietzgen, R. G. and Francki, R. I. B. 1992. Cucumber mosaic virus. Adv. Virus Res. 41 :281-348 https://doi.org/10.1016/S0065-3527(08)60039-1
  21. Rizzo, T. M. and Palukaitis, P. 1990. Construction of full-length eDNA clones of cucumber mosaic virus RNAs 1, 2 and 3: generation of infectious RNA transcripts. Mol. Gen. Genet. 222:249-256 https://doi.org/10.1007/BF00633825
  22. Roossinck, M. J. 1997. Mechanisms of plant virus evolution. Annu. Rev. Phytopathol. 35:191-209 https://doi.org/10.1146/annurev.phyto.35.1.191
  23. Roossinck, M. J. and Palukaitis, P. 1990. Rapid induction and severity of symptoms in zucchini squash (Cucurbita pepo) map to RNA1 of cucumber mosaic virus. Mol. Plant-Microbe Interact. 3: 188-192 https://doi.org/10.1094/MPMI-3-188
  24. Roossinck, M. J., Zhang, L. and Hellward, K. H. 1999. Rearrangements in the 5' nontranslated region and phylogenetic analyses of cucumber mosaic virus RNA3 indicate radial evolution of three subgroups. J. Virol. 73:6752-6758
  25. Ryu, K. H., Kim, C. H. and Palukaitis, P. 1998. The coat protein of cucumber mosaic virus is a host range determinant for infection of maize. Mol. Plant-Microbe Interact. 11 :351-357 https://doi.org/10.1094/MPMI.1998.11.5.351
  26. Ryu, K. H., Park, W. M. and Choi, J. K. 2002. Characterization and sequence analysis of a lily isolate of Cucumber mosaic virus from Lilium tsingtauense. Plant Pathol. J. 18:85-92 https://doi.org/10.5423/PPJ.2002.18.2.085
  27. Sambrook, J., Fritsch, E. F. and Maniatis, T. 1989. Molecular cloning. A laboratory Manual. Cold Spring Harbor, NY: Cold. Spring Harbor Laboratory
  28. Sanger, F., Niklen, S. and Colson, A. R. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463-5467
  29. Scholthof, H. B. 2005. Plant virus transport: motions of functional equivalence. Trends Plant Sci. 10:376-382 https://doi.org/10.1016/j.tplants.2005.07.002
  30. Shintaku, M. H., Zhang, L. and Palukaitis, P. 1992. A single amino acid substitution in the coat protein of cucumber mosaic virus induces chlorosis in tobacco. Plant Cell 4:751-757 https://doi.org/10.1105/tpc.4.7.751
  31. Suzuki, M., Kuwata, S., Masuta, C. and Takanami, Y. 1995. Point mutations in the coat protein of cucumber mosaic virus affect symptom expression and virion accumulation in tobacco. J. Gen. Virol. 76:1791-1719 https://doi.org/10.1099/0022-1317-76-7-1791
  32. Szilassy, D., Salanki, K. and Balazs, E. 1999. Stunting induced by cucumber mosaic cucumovirus-infected Nicotiana glutinosa is determined by a single amino acid residue in the coat protein. Mol. Plant-Microbe Interact. 12: 11 05-1113
  33. Taliansky, M. E. and Garcia-Arenal, F. 1995. Role of cucumovirus capsid protein in long-distance movement within the infected plant J. Virol. 69: 916-922
  34. Takeshita, M., Suzuki, M., Kuwata, S. and Takanami, Y. 1998. Involvement of cucumber mosaic cucumovirus RNA2 and RNA3 in viral systemic spread in radish plant. Arch. Virol. 143:1109-1117 https://doi.org/10.1007/s007050050359
  35. Takeshita, M., Suzuki, M. and Takanami, Y. 2001. Combination of amino acids in the 3a protein and the coat protein of cucumber mosaic virus determines symptom expression and viral spread in bottle gourd. Arch. Virol. 146:697-711 https://doi.org/10.1007/s007050170140
  36. Waigmann, E., Deki, S., Trutnyeva, K. and Citovsky, V. 2004. The ins and outs of nondestructive cell-to-cell and systemic movement of plant viruses. Crit. Rev. Plant Sci. 23: 195-250 https://doi.org/10.1080/07352680490452807
  37. Yamaguchi, N., Seshimo, Y. and Masuta, C. 2005. Mapping of the sequence domain for systemic infection in edible lily on the viral genome of Cucumber mosaic virus. J. Gen. Plant Pathol. 71:373-376 https://doi.org/10.1007/s10327-005-0213-4
  38. Zhang, L., Hanada, K. and Palukaitis, P. 1994. Mapping local and systemic symptom determinants of cucumber mosaic cucumovirus in tobacco. J. Gen. Virol. 75:3185-3191 https://doi.org/10.1099/0022-1317-75-11-3185

Cited by

  1. Genetic diversity, distant phylogenetic relationships and the occurrence of recombination events among cucumber mosaic virus isolates from zucchini in Poland vol.162, pp.6, 2017, https://doi.org/10.1007/s00705-017-3285-5
  2. Cucumber mosaic virus groups IA and II are represented among isolates from naturally infected lilies vol.127, pp.3, 2010, https://doi.org/10.1007/s10658-010-9600-6
  3. Characterization of a Novel Cucumber mosaic virus Isolated from Petunia hybrida vol.28, pp.3, 2012, https://doi.org/10.5423/PPJ.NT.04.2012.0050
  4. A genetically novel, narrow-host-range isolate of cucumber mosaic virus (CMV) from rosemary vol.161, pp.7, 2016, https://doi.org/10.1007/s00705-016-2874-z
  5. Characteristics of Cucumber mosaic virus isolated from Zea mays in Korea vol.27, pp.4, 2011, https://doi.org/10.5423/PPJ.2011.27.4.372
  6. Generation of infectious transcripts from Korean strain and mild mottle strain of potato virus X vol.46, pp.5, 2008, https://doi.org/10.1007/s12275-008-0078-2
  7. First report of Cucumber mosaic virus in African Impatiens (Impatiens walleriana) in Korea vol.21, pp.4, 2015, https://doi.org/10.5423/RPD.2015.21.4.341
  8. Rapid detection of Cucumber mosaic virus isolates representing distinct phylogenetic subgroups by reverse transcription, loop-mediated isothermal amplification 2017, https://doi.org/10.1007/s41348-017-0092-x