Browse > Article
http://dx.doi.org/10.5423/PPJ.2004.20.1.046

Platform of Hot Pepper Defense Genomics: Isolation of Pathogen Responsive Genes in Hot Pepper (Capsicum annuum L.) Non-Host Resistance Against Soybean Pustule Pathogen (Xanthomonas axonopodis pv. glycines)  

Lee, Sang-Hyeob (Genome Research Unit, Plant Genomics Lab, Korea Research Institute of Bioscience and Biotechnology)
Park, Do-Il (Plant Genomics Lab., KRIBB)
Publication Information
The Plant Pathology Journal / v.20, no.1, 2004 , pp. 46-51 More about this Journal
Abstract
Host resistance is usually parasite-specific and is restricted to a particular pathogen races, and commonly is expressed against specific pathogen genotypes. In contrast, resistance shown by an entire plant species to a species of pathogen is known as non-host resistance. Therefore, non-host resistance is the more common and broad form of disease resistance exhibited by plants. As a first step to understand the mechanism of non-host plant defense, expressed sequence tags (EST) were generated from a hot pepper leaf cDNA library constructed from combined leaves collected at different time points after inoculation with non-host soybean pustule pathogen (Xanthomonas axonopodis pv. Glycines; Xag). To increase gene diversity, ESTs were also generated from cDNA libraries constructed from anthers and flower buds. Among a total of 10,061 ESTs, 8,525 were of sufficient quality to analyze further. Clustering analysis revealed that 55 % of all ESTs (4685) occurred only once. BLASTX analysis revealed that 74% of the ESTs had significant sequence similarity to known proteins present in the NCBI nr database. In addition, 1,265 ESTs were tentatively identified as being full-length cDNAs. Functional classification of the ESTs derived from pathogen-infected pepper leaves revealed that about 25% were disease- or defense-related genes. Furthermore, 323 (7%) ESTs were tentatively identified as being unique to hot pepper. This study represents the first analysis of sequence data from the hot pepper plant species. Although we focused on genes related to the plant defense response, our data will be useful for future comparative studies.
Keywords
Citations & Related Records
연도 인용수 순위
  • Reference
1 Becker, J., Kempf, R., Jeblick, W. and Kauss, H. 2000. Induction of competence for elicitation of defense responses in cucumber hypocotyls requires proteasome activity. Plant J. 21:311-316   DOI   ScienceOn
2 Dixon, R. A. 1986. Phytoalexin response; Elicitation, signaling, and control of host gene expression. BioI. Rev. Camb. Philos. Soc. 61:239-292   DOI
3 Ewing, B., Hiller, L., Wendle, M. C. and Green, P. 1998. Basecalling of automated sequencer traces using Phred. I Accuracyy assesement. Genome Res. 8:175-185   DOI   ScienceOn
4 Ewing, B. and Green, P. 1998. Basecalling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 8:186-194
5 Genoud, T. and Metraux, J. P. 1999. Crosstalk in plant cell signaling: structure and function of the genetic network. Trends Plant Sci. 3:141-146   DOI   ScienceOn
6 Kim, S., Kim, S. R., An, C. S., Hong, Y. N. and Lee, K. W. 2001. Constitutive expression of rice MADS box gene using seed explants in hot pepper (Capsicum annuum L.). Mol. Cells 12: 221-226
7 Kwak, J. M., Kim, S. A., Hong, S. W. and Nam, H. G. 1997. Evaluation of 515 expressed sequence tags obtained from guard cells of Brassica campestris. Planta 202:9-17   DOI   ScienceOn
8 Lee, J., Klessig, D. F. and Nurnberger, T. 2001. A harpin binding site in tobacco plasma membranes mediates activation of the pathogenesis-related gene hin1 independent of extracellular calcium but dependent on mitogen-activated protein kinase activity. Plant Cell 13:1079-93   DOI   ScienceOn
9 Maleck, K. and Dietrich, R. A. 1999. Defense on multiple fronts: how do plants cope with diverse enemies? Trend Plant Sci. 4:215-219   DOI   ScienceOn
10 Parsons, J. D., Brenner, S. and Bishop, M. J. 1992. Clustering cDNA sequences. Comput. Applic Biosci. 11:603-613
11 Qutob, D., Hraber, P. T., Sobral, B. W. S. and Gijzen, M. 2000. Comparative Analysis of expressed sequences in Phytophthora sojae. Plant Physiol. 123:243-253   DOI   ScienceOn
12 Roberts, M. R. and Bowles, D. J. 1999. Fusicoccin, 14-3-3 proteins, and defense responses in tomato plants. Plant Physiol. 119:1243-1250   DOI   ScienceOn
13 Sasaki, T., Song, J., KogaBan, Y. et al. 1994. Toward cataloguing all rice genes: large-scale sequencing of randomly chosen rice cDNA from a callus cDNA library. Plant J. 6:615-624   DOI   ScienceOn
14 Suh, M. C., Yi, S. Y., Lee, S., Sim, W. S., Pai, H. S. and Choi, D. 2001 Pathogen-induced expression of plant ATP:citrate lyase. FEBS Letters 488:211-212   DOI   PUBMED   ScienceOn
15 Thomma, B. P., Penninckx, I. A., Broekaert, W. F. and Cammue, B. P. 2001. The complexity of disease signaling in Arabidopsis. Curr. Opin. Immunol. 13:63-68   DOI   ScienceOn
16 Whitbred, J. M. and Schuler, M. A. 2000. Molecular characterization of CYP73A9 and CYP82A1 P450 genes involved in plant defense in pea. Plant Physiol. 124:47-58   DOI   ScienceOn
17 Zhao, X. P. and Kochert, G. 1992. Characterization and genetic mapping of a short, highly repeated, interspersed DNAsequence from rice (Oryza sativa L.). Mol. Gen. Genet. 231: 353-359   DOI   ScienceOn
18 Zhu, Y. X., Ou-Yang, W. J. Zhang, Y. F, and Chen, Z. L. 1996. Transgenic sweet pepper plants from Agrobacterium mediated transformation. Plant Cell Rep. 16:71-75   DOI   ScienceOn
19 Van de Loo, F. J., Turner, S. and Somerville, C. 1995. Expressed sequence tags from developing castor seeds. Plant Physiol. 108:1141-1150
20 Mekhedov, S., de Ilarduya, O. M. and Ohlrogge, J. 2000. Plant Physiol. 122:384-401
21 Zhang, L., Ma, X. L., Zhang, Q., Ma, C. L., Wang, P. P., Sun, Y. F., Zhao, Y. X. and Zhang, H. 2001. Expressed sequence tags from a NaCl-treated Suaeda salsa cDNA library. Gene 267:193-200   DOI   ScienceOn
22 Allona, I., Quinn, M., Shoop, E., Swope, K., Cry, S. S., Carlis, J., Riedl, J., Retzel, E., Campbell, M. M., Sederoff, R. and Whetten, R. W. 1998. Analysis of xylem formation in pine by cDNA sequencing. Proc. Natl. Acad Sci. USA. 95:9693-9698   DOI   ScienceOn
23 Dangl, J. L. and Jones, J. D. 2001. Plant pathogens and integrated defence responses to infection. Nature 411:826-833   DOI   ScienceOn
24 EI-Maarouf, H., Barny, M. A., Rona, J. P. and Bouteau, F. 2001. Harpin, a hypersensitive response elicitor from Erwinia amylovora, regulates ion channel activities in Arabidopsis thaliana suspension cells. FEBS Lett. 497:82-84   DOI   PUBMED   ScienceOn
25 Jabs, T., Tschope, M., Colling, C., Hahlbrock, K. and Scheel, D. 1997. Elicitor-stimulated ion fluxes and O2- from the oxidative burst are essential components in triggering defense gene activation and phytoalexin synthesis in parsley. Proc. Natl. Acad. Sci. USA 94:4800-4805   DOI   ScienceOn
26 Cardle, L., Ramsay, L., Milbourne, D., Macaulay, M., Marshall, D. and Waugh, R. 2000. Computational and experimental characterization of physically clustered simple sequence repeats in plants. Genetics 156:847-854
27 Huang, X. and Madan, A. 1999. CAP3: A DNA sequence assembly program. Genome Res. 9:868-877   DOI   ScienceOn
28 Liu, Z. W., Biyashev, R. M. and Saghai Maroof, M. A. 1996. Development of simple sequence repeat markers and their integration into a barley linkage map. Theor. Appl. Gent. 93:869-876   DOI   ScienceOn
29 Milbourne, D., Meyer, R. C., Collins, A. J., Ramsay, L. D., Gebhardt, C. et al. 1998. Isolation, characterization and mapping of simple sequence repeat loci in potato. Mol. Gen. Genet. 259:233-245   DOI   ScienceOn
30 Ryal, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H. Y. and Hunt, M. D. 1996. Systemic acquired reisistance. Plant Cell8:1809-1819   DOI   ScienceOn
31 Tautz, D. 1989. Hypervariability of simple sequences as a general source of polymorphic DNA markers. Nucleic Acids Res. 17:6463-6471   DOI   PUBMED   ScienceOn
32 Lam, E., Benfley, P. N., Gilmartin, P. M., Fang, R. X. and Chua, N. H. 1989. Site specific mutations alter in vivo factor binding and change promoter expression pattern in transgenic plants. Proc. Natl. Acad. Sci. USA 86:7890-7894   DOI   ScienceOn
33 Dong, X. 1998. SA, JA, ethylene, and disease resistance in plants. Curr. Opin. Plant BioI. 1:316-323   DOI   PUBMED   ScienceOn
34 Covitz, P. A., Smith, L. S. and Long, S. R. 1998. Expressed sequence tags from a root-hair-enriched Medicago truncatula cDNa library. Plant Physiol. 117: 1325-1332   DOI   ScienceOn
35 Cooke, R., Raynal, M., Laudie, M., Grellet, F., Delseny, M., Morris, P. C., Guerrier, D., Giraudat, J., Quigley, F., Clabault, G., Li, Y. F., Mache, R., Krivitzky, M. et al. 1996. Further progress towards a catalogue of all Arabidopsis genes: analysis of a set of 5000 non-redundant ESTs. Plant J. 9: 101-124   DOI   ScienceOn
36 Ward, E. R., Uknes, S. J., Williams, S. C., Dincher, S. D., Wiederhold, D. L., Alexander, D. C., Ahl-Goy, P., Metraux, J. P. and Ryal, J. H. 1991. Coordinate gene activity in response to agent that induce systemic acquired resistance. Plant Cell 3:1085-1094   DOI   ScienceOn
37 Ewing, R. M., Kahla. A. B., Poirot, O., Lopez, F., Audic, S. and Claverie, J. M. 1999. Large-scaling statistical analysis of rice ESTs reveal correlated patterns of gene expression. Genome Res. 9: 950-959   DOI   ScienceOn
38 Levine, A., Tenhaken, R., Dixon, R. and Lamb, C. 1994 $H_2O_2$ from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79:583593
39 Ujino-Ihara, T., Yoshimura, K., Ugawa, Y., Yoshimaru, H., Nagasaka, K. and Tsumura, Y. 2000. Plant Mol. Biol. 43:451-457   DOI   ScienceOn
40 Senior, M. L., Chin, E. C. L., Lee, M., Smith, J. S. C. and Stuber, C. W. 1996. Simple sequence repeat markers developed from maize sequences found in the GENEBANK database: map construction. Crop Sci. 36:1676-1683   DOI
41 The Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796-815   DOI   PUBMED   ScienceOn
42 Venter, J. C., Adams, M. D. E. W. et aI. 2001. The sequence of the human genome. Science. 291:1304-135151
43 Blatt, M. R., Grabov, A., Brearley, J., Hammond-Kosack, K. and Jones, J. D. 1999.$K^+$ channels of Cf-9 transgenic tobacco guard cells as targets for Cladosporiumfulvum Avr9 elicitordependent signal transduction. Plant J. 19:453-462   DOI   ScienceOn
44 Morgante, M. and Olivieri, A. M. 1993. PCR-amplified SSRs as markers in plant genetics. Plant J. 3:175-182   DOI   ScienceOn
45 Wu, G., Shortt, B. J., Lawrence, E. B., Levine, E. B., Fitzsimmons, K. C. and Shah, D. M. 1995. Disease resistance conferred by expression of a gene encoding$H_2O_2-$ generating glucose oxidase in transgenic potato plants. Plant Cell 7:1357-1368   DOI   ScienceOn
46 Dixon, R. A. 2001. Natural products and plant disease resistance. Nature 411:843-847   DOI   PUBMED   ScienceOn
47 Kende, H. 1993. Ethylene biosynthesis. Ann. Rev. Plant Physiol. Plant Mol. Biol. 44:283-307   DOI   ScienceOn
48 Walbot, V. and Goldberg, R. B. 1979 Plant genome organization and its relationship to classical plant genetics. In Nucleic Acids in Plant. T. C. Hall and T. W. Davis (eds.) CRC Press Inc., Boca Rata, pp. 3-40
49 Zimmermann, S., Nurnberger, T., Frachisse, J. M., Wirtz, W., Guern, J., Hedrich, R. and Scheel, D. 1997. Receptor-mediated activation of a plant Ca(2+)-permeable ion channel involved in pathogen defense. Proc. Natl. Acad. Sci. USA 94:2751-2755   DOI   ScienceOn
50 Ablett, E., Seaton, G., Scott, K., Shelton, D., Graham, M. W., P. Baverstock, L. S. Lee, and R. Henry. 2000 Analysis of grape ESTs: global gene expression patterns in leaf and berry. Plant Science 159:87-95   DOI   ScienceOn
51 Somssich, I. E. and Hahlbrock, K. 1998. Pathogen defense in plants- a paradigm of biological complexity. Trends Plant Sci. 3:86-90   DOI   ScienceOn
52 Akkaya, M. S., Bhagwat, A. A. and Cregan, P. P. 1992. Length polymorphisms of simple sequence repeat DNA in soybean. Genetics 132: 1131-1139
53 An, C. S., Kim, C. S. and Go, S. L. 1996. Analysis of red pepper (Capsicum annuum) genome. J. Plant BioI. 39:57-61
54 Bowles, D. J. 1990. Defense-related proteins in higher plants. Annu. Rev. Biochem. 59:873-907   DOI   PUBMED   ScienceOn
55 Oh, B. J., Ko, M. K., Kostenyuk, I., Shin, B. and Kim, K. S. 1999. Coexpression of a defensin gene and a thionin-like via different signal transduction pathways in pepper and Colletotrichum gloeosporioides interactions. Plant Mol. Biol. 41:313-319   DOI   ScienceOn