DOI QR코드

DOI QR Code

Platform of Hot Pepper Defense Genomics: Isolation of Pathogen Responsive Genes in Hot Pepper (Capsicum annuum L.) Non-Host Resistance Against Soybean Pustule Pathogen (Xanthomonas axonopodis pv. glycines)

  • Lee, Sang-Hyeob (Genome Research Unit, Plant Genomics Lab, Korea Research Institute of Bioscience and Biotechnology) ;
  • Park, Do-Il (Plant Genomics Lab., KRIBB)
  • Published : 2004.03.01

Abstract

Host resistance is usually parasite-specific and is restricted to a particular pathogen races, and commonly is expressed against specific pathogen genotypes. In contrast, resistance shown by an entire plant species to a species of pathogen is known as non-host resistance. Therefore, non-host resistance is the more common and broad form of disease resistance exhibited by plants. As a first step to understand the mechanism of non-host plant defense, expressed sequence tags (EST) were generated from a hot pepper leaf cDNA library constructed from combined leaves collected at different time points after inoculation with non-host soybean pustule pathogen (Xanthomonas axonopodis pv. Glycines; Xag). To increase gene diversity, ESTs were also generated from cDNA libraries constructed from anthers and flower buds. Among a total of 10,061 ESTs, 8,525 were of sufficient quality to analyze further. Clustering analysis revealed that 55 % of all ESTs (4685) occurred only once. BLASTX analysis revealed that 74% of the ESTs had significant sequence similarity to known proteins present in the NCBI nr database. In addition, 1,265 ESTs were tentatively identified as being full-length cDNAs. Functional classification of the ESTs derived from pathogen-infected pepper leaves revealed that about 25% were disease- or defense-related genes. Furthermore, 323 (7%) ESTs were tentatively identified as being unique to hot pepper. This study represents the first analysis of sequence data from the hot pepper plant species. Although we focused on genes related to the plant defense response, our data will be useful for future comparative studies.

Keywords

References

  1. Ablett, E., Seaton, G., Scott, K., Shelton, D., Graham, M. W., P. Baverstock, L. S. Lee, and R. Henry. 2000 Analysis of grape ESTs: global gene expression patterns in leaf and berry. Plant Science 159:87-95 https://doi.org/10.1016/S0168-9452(00)00335-6
  2. Akkaya, M. S., Bhagwat, A. A. and Cregan, P. P. 1992. Length polymorphisms of simple sequence repeat DNA in soybean. Genetics 132: 1131-1139
  3. Allona, I., Quinn, M., Shoop, E., Swope, K., Cry, S. S., Carlis, J., Riedl, J., Retzel, E., Campbell, M. M., Sederoff, R. and Whetten, R. W. 1998. Analysis of xylem formation in pine by cDNA sequencing. Proc. Natl. Acad Sci. USA. 95:9693-9698 https://doi.org/10.1073/pnas.95.16.9693
  4. An, C. S., Kim, C. S. and Go, S. L. 1996. Analysis of red pepper (Capsicum annuum) genome. J. Plant BioI. 39:57-61
  5. Becker, J., Kempf, R., Jeblick, W. and Kauss, H. 2000. Induction of competence for elicitation of defense responses in cucumber hypocotyls requires proteasome activity. Plant J. 21:311-316 https://doi.org/10.1046/j.1365-313x.2000.00677.x
  6. Blatt, M. R., Grabov, A., Brearley, J., Hammond-Kosack, K. and Jones, J. D. 1999.$K^+$ channels of Cf-9 transgenic tobacco guard cells as targets for Cladosporiumfulvum Avr9 elicitordependent signal transduction. Plant J. 19:453-462 https://doi.org/10.1046/j.1365-313x.1999.00534.x
  7. Bowles, D. J. 1990. Defense-related proteins in higher plants. Annu. Rev. Biochem. 59:873-907 https://doi.org/10.1146/annurev.bi.59.070190.004301
  8. Cardle, L., Ramsay, L., Milbourne, D., Macaulay, M., Marshall, D. and Waugh, R. 2000. Computational and experimental characterization of physically clustered simple sequence repeats in plants. Genetics 156:847-854
  9. Cooke, R., Raynal, M., Laudie, M., Grellet, F., Delseny, M., Morris, P. C., Guerrier, D., Giraudat, J., Quigley, F., Clabault, G., Li, Y. F., Mache, R., Krivitzky, M. et al. 1996. Further progress towards a catalogue of all Arabidopsis genes: analysis of a set of 5000 non-redundant ESTs. Plant J. 9: 101-124 https://doi.org/10.1046/j.1365-313X.1996.09010101.x
  10. Covitz, P. A., Smith, L. S. and Long, S. R. 1998. Expressed sequence tags from a root-hair-enriched Medicago truncatula cDNa library. Plant Physiol. 117: 1325-1332 https://doi.org/10.1104/pp.117.4.1325
  11. Dangl, J. L. and Jones, J. D. 2001. Plant pathogens and integrated defence responses to infection. Nature 411:826-833 https://doi.org/10.1038/35081161
  12. Dixon, R. A. 1986. Phytoalexin response; Elicitation, signaling, and control of host gene expression. BioI. Rev. Camb. Philos. Soc. 61:239-292 https://doi.org/10.1111/j.1469-185X.1986.tb00719.x
  13. Dixon, R. A. 2001. Natural products and plant disease resistance. Nature 411:843-847 https://doi.org/10.1038/35081178
  14. Dong, X. 1998. SA, JA, ethylene, and disease resistance in plants. Curr. Opin. Plant BioI. 1:316-323 https://doi.org/10.1016/1369-5266(88)80053-0
  15. EI-Maarouf, H., Barny, M. A., Rona, J. P. and Bouteau, F. 2001. Harpin, a hypersensitive response elicitor from Erwinia amylovora, regulates ion channel activities in Arabidopsis thaliana suspension cells. FEBS Lett. 497:82-84 https://doi.org/10.1016/S0014-5793(01)02441-3
  16. Ewing, B., Hiller, L., Wendle, M. C. and Green, P. 1998. Basecalling of automated sequencer traces using Phred. I Accuracyy assesement. Genome Res. 8:175-185 https://doi.org/10.1101/gr.8.3.175
  17. Ewing, B. and Green, P. 1998. Basecalling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 8:186-194
  18. Ewing, R. M., Kahla. A. B., Poirot, O., Lopez, F., Audic, S. and Claverie, J. M. 1999. Large-scaling statistical analysis of rice ESTs reveal correlated patterns of gene expression. Genome Res. 9: 950-959 https://doi.org/10.1101/gr.9.10.950
  19. Genoud, T. and Metraux, J. P. 1999. Crosstalk in plant cell signaling: structure and function of the genetic network. Trends Plant Sci. 3:141-146 https://doi.org/10.1016/S1360-1385(98)01226-6
  20. Huang, X. and Madan, A. 1999. CAP3: A DNA sequence assembly program. Genome Res. 9:868-877 https://doi.org/10.1101/gr.9.9.868
  21. Jabs, T., Tschope, M., Colling, C., Hahlbrock, K. and Scheel, D. 1997. Elicitor-stimulated ion fluxes and O2- from the oxidative burst are essential components in triggering defense gene activation and phytoalexin synthesis in parsley. Proc. Natl. Acad. Sci. USA 94:4800-4805 https://doi.org/10.1073/pnas.94.9.4800
  22. Kende, H. 1993. Ethylene biosynthesis. Ann. Rev. Plant Physiol. Plant Mol. Biol. 44:283-307 https://doi.org/10.1146/annurev.pp.44.060193.001435
  23. Kim, S., Kim, S. R., An, C. S., Hong, Y. N. and Lee, K. W. 2001. Constitutive expression of rice MADS box gene using seed explants in hot pepper (Capsicum annuum L.). Mol. Cells 12: 221-226
  24. Kwak, J. M., Kim, S. A., Hong, S. W. and Nam, H. G. 1997. Evaluation of 515 expressed sequence tags obtained from guard cells of Brassica campestris. Planta 202:9-17 https://doi.org/10.1007/s004250050097
  25. Lam, E., Benfley, P. N., Gilmartin, P. M., Fang, R. X. and Chua, N. H. 1989. Site specific mutations alter in vivo factor binding and change promoter expression pattern in transgenic plants. Proc. Natl. Acad. Sci. USA 86:7890-7894 https://doi.org/10.1073/pnas.86.20.7890
  26. Lee, J., Klessig, D. F. and Nurnberger, T. 2001. A harpin binding site in tobacco plasma membranes mediates activation of the pathogenesis-related gene hin1 independent of extracellular calcium but dependent on mitogen-activated protein kinase activity. Plant Cell 13:1079-93 https://doi.org/10.1105/tpc.13.5.1079
  27. Levine, A., Tenhaken, R., Dixon, R. and Lamb, C. 1994 $H_2O_2$ from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79:583593
  28. Liu, Z. W., Biyashev, R. M. and Saghai Maroof, M. A. 1996. Development of simple sequence repeat markers and their integration into a barley linkage map. Theor. Appl. Gent. 93:869-876 https://doi.org/10.1007/BF00224088
  29. Maleck, K. and Dietrich, R. A. 1999. Defense on multiple fronts: how do plants cope with diverse enemies? Trend Plant Sci. 4:215-219 https://doi.org/10.1016/S1360-1385(99)01415-6
  30. Mekhedov, S., de Ilarduya, O. M. and Ohlrogge, J. 2000. Plant Physiol. 122:384-401
  31. Milbourne, D., Meyer, R. C., Collins, A. J., Ramsay, L. D., Gebhardt, C. et al. 1998. Isolation, characterization and mapping of simple sequence repeat loci in potato. Mol. Gen. Genet. 259:233-245 https://doi.org/10.1007/s004380050809
  32. Morgante, M. and Olivieri, A. M. 1993. PCR-amplified SSRs as markers in plant genetics. Plant J. 3:175-182 https://doi.org/10.1111/j.1365-313X.1993.tb00020.x
  33. Oh, B. J., Ko, M. K., Kostenyuk, I., Shin, B. and Kim, K. S. 1999. Coexpression of a defensin gene and a thionin-like via different signal transduction pathways in pepper and Colletotrichum gloeosporioides interactions. Plant Mol. Biol. 41:313-319 https://doi.org/10.1023/A:1006336203621
  34. Parsons, J. D., Brenner, S. and Bishop, M. J. 1992. Clustering cDNA sequences. Comput. Applic Biosci. 11:603-613
  35. Qutob, D., Hraber, P. T., Sobral, B. W. S. and Gijzen, M. 2000. Comparative Analysis of expressed sequences in Phytophthora sojae. Plant Physiol. 123:243-253 https://doi.org/10.1104/pp.123.1.243
  36. Roberts, M. R. and Bowles, D. J. 1999. Fusicoccin, 14-3-3 proteins, and defense responses in tomato plants. Plant Physiol. 119:1243-1250 https://doi.org/10.1104/pp.119.4.1243
  37. Ryal, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H. Y. and Hunt, M. D. 1996. Systemic acquired reisistance. Plant Cell8:1809-1819 https://doi.org/10.1105/tpc.8.10.1809
  38. Sasaki, T., Song, J., KogaBan, Y. et al. 1994. Toward cataloguing all rice genes: large-scale sequencing of randomly chosen rice cDNA from a callus cDNA library. Plant J. 6:615-624 https://doi.org/10.1046/j.1365-313X.1994.6040615.x
  39. Senior, M. L., Chin, E. C. L., Lee, M., Smith, J. S. C. and Stuber, C. W. 1996. Simple sequence repeat markers developed from maize sequences found in the GENEBANK database: map construction. Crop Sci. 36:1676-1683 https://doi.org/10.2135/cropsci1996.0011183X003600060043x
  40. Somssich, I. E. and Hahlbrock, K. 1998. Pathogen defense in plants- a paradigm of biological complexity. Trends Plant Sci. 3:86-90 https://doi.org/10.1016/S1360-1385(98)01199-6
  41. Suh, M. C., Yi, S. Y., Lee, S., Sim, W. S., Pai, H. S. and Choi, D. 2001 Pathogen-induced expression of plant ATP:citrate lyase. FEBS Letters 488:211-212 https://doi.org/10.1016/S0014-5793(00)02419-4
  42. Tautz, D. 1989. Hypervariability of simple sequences as a general source of polymorphic DNA markers. Nucleic Acids Res. 17:6463-6471 https://doi.org/10.1093/nar/17.16.6463
  43. The Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796-815 https://doi.org/10.1038/35048692
  44. Thomma, B. P., Penninckx, I. A., Broekaert, W. F. and Cammue, B. P. 2001. The complexity of disease signaling in Arabidopsis. Curr. Opin. Immunol. 13:63-68 https://doi.org/10.1016/S0952-7915(00)00183-7
  45. Ujino-Ihara, T., Yoshimura, K., Ugawa, Y., Yoshimaru, H., Nagasaka, K. and Tsumura, Y. 2000. Plant Mol. Biol. 43:451-457 https://doi.org/10.1023/A:1006492103063
  46. Van de Loo, F. J., Turner, S. and Somerville, C. 1995. Expressed sequence tags from developing castor seeds. Plant Physiol. 108:1141-1150
  47. Venter, J. C., Adams, M. D. E. W. et aI. 2001. The sequence of the human genome. Science. 291:1304-135151
  48. Walbot, V. and Goldberg, R. B. 1979 Plant genome organization and its relationship to classical plant genetics. In Nucleic Acids in Plant. T. C. Hall and T. W. Davis (eds.) CRC Press Inc., Boca Rata, pp. 3-40
  49. Ward, E. R., Uknes, S. J., Williams, S. C., Dincher, S. D., Wiederhold, D. L., Alexander, D. C., Ahl-Goy, P., Metraux, J. P. and Ryal, J. H. 1991. Coordinate gene activity in response to agent that induce systemic acquired resistance. Plant Cell 3:1085-1094 https://doi.org/10.1105/tpc.3.10.1085
  50. Whitbred, J. M. and Schuler, M. A. 2000. Molecular characterization of CYP73A9 and CYP82A1 P450 genes involved in plant defense in pea. Plant Physiol. 124:47-58 https://doi.org/10.1104/pp.124.1.47
  51. Wu, G., Shortt, B. J., Lawrence, E. B., Levine, E. B., Fitzsimmons, K. C. and Shah, D. M. 1995. Disease resistance conferred by expression of a gene encoding$H_2O_2-$ generating glucose oxidase in transgenic potato plants. Plant Cell 7:1357-1368 https://doi.org/10.1105/tpc.7.9.1357
  52. Zhang, L., Ma, X. L., Zhang, Q., Ma, C. L., Wang, P. P., Sun, Y. F., Zhao, Y. X. and Zhang, H. 2001. Expressed sequence tags from a NaCl-treated Suaeda salsa cDNA library. Gene 267:193-200 https://doi.org/10.1016/S0378-1119(01)00403-6
  53. Zhao, X. P. and Kochert, G. 1992. Characterization and genetic mapping of a short, highly repeated, interspersed DNAsequence from rice (Oryza sativa L.). Mol. Gen. Genet. 231: 353-359 https://doi.org/10.1007/BF00292702
  54. Zimmermann, S., Nurnberger, T., Frachisse, J. M., Wirtz, W., Guern, J., Hedrich, R. and Scheel, D. 1997. Receptor-mediated activation of a plant Ca(2+)-permeable ion channel involved in pathogen defense. Proc. Natl. Acad. Sci. USA 94:2751-2755 https://doi.org/10.1073/pnas.94.6.2751
  55. Zhu, Y. X., Ou-Yang, W. J. Zhang, Y. F, and Chen, Z. L. 1996. Transgenic sweet pepper plants from Agrobacterium mediated transformation. Plant Cell Rep. 16:71-75 https://doi.org/10.1007/BF01275453

Cited by

  1. Role of a novel pathogen-induced pepper C3–H–C4 type RING-finger protein gene, CaRFP1, in disease susceptibility and osmotic stress tolerance vol.63, pp.4, 2007, https://doi.org/10.1007/s11103-006-9110-2