• Title/Summary/Keyword: sequence length

Search Result 1,234, Processing Time 0.024 seconds

A* Algorithm for Optimal Intra-bay Container Pre-marshalling Plan (컨테이너 터미널에서 베이 내 컨테이너의 최적 재정돈을 위한 A* 알고리즘)

  • Ha, Byung-Hyun;Kim, Sang-Su
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.38 no.2
    • /
    • pp.157-172
    • /
    • 2012
  • In most container terminals, containers are piled up and stored in a yard in order to utilize the space efficiently. Hence, it requires unproductive container-handling operations to retrieve a container that is not placed on the top of a container stack. As a result, to streamline container-loading operations by which containers are transferred from a yard to a vessel, it is necessary to pre-marshal (i.e., shuffle in advance) containers in accordance with container-loading plan. We propose $A^*$ algorithm to find the optimal container-relocation sequence for the intra-bay container pre-marshalling problem. To work out the heuristic estimate for the proposed $A^*$ algorithm, we introduce the container rearrangement problem and obtain the lower bound of the length of the optimal relocation sequence. The performance of the algorithm is validated extensively by the numerical experiments on the problem instances that are given in the previous studies and generated randomly with various parameters.

Morphological and Molecular Characteristics of the Oak Tree Canker Pathogen, $Annulohypoxylon$ $truncatum$

  • Cha, Jae-Yul;Heo, Bit-Na;Ahn, Soo-Jeong;Gang, Guen-Hye;Park, Chung-Gyoo;Kwak, Youn-Sig
    • Mycobiology
    • /
    • v.40 no.1
    • /
    • pp.79-81
    • /
    • 2012
  • Cankers are localized dead areas in the bark of stems, branches or twigs of many types of trees and shrubs, and are usually caused by fungi. We observed severe canker symptoms in oak trees located in Gyeongnam province in 2011. A total 31 trees were discovered with cankers of varied size, with an average of $48.5{\times}15.2cm$. Black, half-rounded globular mound shaped stromata were associated with the cankers, and the asci of the fungi associated with the cankers were cylindrical shaped with their spore-bearing parts being up to 84 ${\mu}m$ in length. The average fungal ascospores size was $7.59{\times}4.23{\mu}m$. The internal transcribed spacer sequence for the canker causing fungus showed 99% similarity to the sequence of $Annulohypoxylon$ $truncatum$. In this study, the isolated fungus was precisely described and then compared with fungi of similar taxa.

CAPS Marker Linked to Tomato Hypocotyl Pigmentation

  • Kim, Hyoun-Joung;Lee, Heung-Ryul;Hyun, Ji-Young;Won, Dong-Chan;Hong, Dong-Oh;Harn, Chee-Hark
    • Horticultural Science & Technology
    • /
    • v.30 no.1
    • /
    • pp.56-63
    • /
    • 2012
  • Tomato hypocotyl can generally be one of two colors, purple or green. Genetically, this trait is controlled by a single dominant gene. Hypocotyl tissue specific color expression is one of many visible genetic marker sources used to select tomato progeny. However, the visible marker does not show a clear distinction between homozygous genotype and heterozygous genotype from the breeding lines. Therefore, to identify a hypocotyl pigmentation related marker, we screened DNA polymorphisms in thirteen tomato lines showing purple or green hypocotyls. The markers used for screening consisted of primer set information obtained from anthocyanin related genes, conserved ortholog set II (COS II) marker sets localized near anthocyanin related genes, and restriction fragment length polymorphism (RFLP) markers localized near COS II markers, which produce polymorphisms between purple and green tomatoes. One primer from a RFLP fragment resulted in a polymorphism on agarose gel electrophoresis. From the RFLP fragment, a cleaved amplified polymorphic sequence (CAPS) marker was developed to distinguish between purple and green hypocotyls. The genotypes of 135 $F_2$ individuals were analyzed using the CAPS marker, and among them, 132 individuals corresponded to the phenotypes of hypocotyl pigmentation.

Vibration Analysis of the Rotating Hybrid Cylindrical Shells Laminated with Metal and Composite (회전하는 금속복합재료 혼합적층 원통쉘의 진동해석)

  • Lee, Young-Sin;Kim, Young-Wann
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.3
    • /
    • pp.968-977
    • /
    • 1996
  • The linear/nonlinear vibration response of the rotating hybrid cylindrical shell with simply supported boundary condition is studied. The Ritz-Galerkin method is applied to obtain the nonlinear frequency equation, which excludes in-plane and rotatory inertia but includes bending stretching coupling terms. The bifurcation phenomena for the linear frequency and the frequency ratio(nonlinear/linear frequency ratio) are presented. The hybrid cylindrical shells are composed of composite(GFRP, CFRP) metal(aluminium, steel) with symmetric and antisymmetric stacking sequence. The effects of the Coriolis and centrifugal force are considered The results also present the effects of length-to- radies ratio, radius-to-thickness ratio, the circumferential wave number, the stacking sequence, the material property, the initial excitation amplitude and the rotating speed. The present linear frequency results are compared with those of the available literature.

Comparative Analysis of Chloroplast Genome of Dysphania ambrosioides (L.) Mosyakin & Clemants Understanding Phylogenetic Relationship in Genus Dysphania R. Br.

  • Kim, Yongsung;Park, Jongsun;Chung, Youngjae
    • Korean Journal of Plant Resources
    • /
    • v.32 no.6
    • /
    • pp.644-668
    • /
    • 2019
  • Dysphania ambrosioides (L.) Mosyakin & Clemants which belongs to Chenopodiaceae/Amaranthaceae sensu in APG system has been known as a useful plant in various fields as well as an invasive species spreading all over the world. To understand its phylogenetic relationship with neighbour species, we completed chloroplast genome of D. ambrosioides collected in Korea. Its length is 151,689 bp consisting of four sub-regions: 83,421 bp of large single copy (LSC) and 18,062 bp of small single copy (SSC) regions are separated by 25,103 bp of inverted repeat (IR) regions. 128 genes (84 protein-coding genes, eight rRNAs, and 36 tRNAs) were annotated. The overall GC content of the chloroplast genome is 36.9% and those in the LSC, SSC and IR regions are 34.9%, 30.3%, and 42.7%, respectively. Distribution of simple sequence repeats are similar to those of the other two Dysphania chloroplasts; however, different features can be utilized for population genetics. Nucleotide diversity of Dysphania chloroplast genomes 18 genes including two ribosomal RNAs contains high nucleotide diversity peaks, which may be genus or species-specific manner. Phylogenetic tree presents that D. ambrosioides occupied a basal position in genus Dysphania and phylogenetic relation of tribe level is presented clearly with complete chloroplast genomes.

Novel Method for DNA-Based Elliptic Curve Cryptography for IoT Devices

  • Tiwari, Harsh Durga;Kim, Jae Hyung
    • ETRI Journal
    • /
    • v.40 no.3
    • /
    • pp.396-409
    • /
    • 2018
  • Elliptic curve cryptography (ECC) can achieve relatively good security with a smaller key length, making it suitable for Internet of Things (IoT) devices. DNA-based encryption has also been proven to have good security. To develop a more secure and stable cryptography technique, we propose a new hybrid DNA-encoded ECC scheme that provides multilevel security. The DNA sequence is selected, and using a sorting algorithm, a unique set of nucleotide groups is assigned. These are directly converted to binary sequence and then encrypted using the ECC; thus giving double-fold security. Using several examples, this paper shows how this complete method can be realized on IoT devices. To verify the performance, we implement the complete system on the embedded platform of a Raspberry Pi 3 board, and utilize an active sensor data input to calculate the time and energy required for different data vector sizes. Connectivity and resilience analysis prove that DNA-mapped ECC can provide better security compared to ECC alone. The proposed method shows good potential for upcoming IoT technologies that require a smaller but effective security system.

Numerical Stability Improvement Technique for Indirect Feedback Kalman Filter in Delayed-Measurement Systems (시간지연을 고려한 간접 되먹임 구조 칼만필터의 수치안정성 향상 기법)

  • Nam, Seongho;Sung, Changky;Kim, Taewon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.25-32
    • /
    • 2017
  • Most of weapon systems use aided navigation system which integrates inertial navigation and aiding sensors to compensate the INS errors increasing with the passage of time. Various aid sensors can be applied such as Global Navigation Satellite System (GNSS), radar, barometer, etc., but there might exist time delay caused by signal processing or transferring aid information. This time delay leads out-of-sequence measurements (OOSM) systems. Previously, optimal and suboptimal measurment update method for OOSM systems, where the time delay length are known, are proposed. However, previous algorithm does not guarantee the positive definite property of covariance matrix. In order to improve numerical stability for aided navigation using delayed-measurement, this paper proposes a new measurement covariance update algorithm be similar to Joseph-form in Kalman filter. Futhermore, we propose how to implement it in indirect feedback Kalman filter structure, which is commonly used in aided navigation systems, for time-delayed measurement systems. Simulation and vehicle test results show effectiveness of a proposed algorithm.

Sequence and phylogenetic analysis of Intergenic spacer (IGS) region of ten microsporian isolates infecting Indian vanya silkworms (Samia cynthia ricini and Antheraea assamensis).

  • Hassan, Wazid;Surendra Nath, B.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.33 no.2
    • /
    • pp.121-131
    • /
    • 2016
  • Ten microsporidian isolates from Samia cynthia ricini, and Antheraea assamensis in India along with a Nosema reference strain (NIK-1s_mys) from B. mori India were characterised morphologically and molecular based tools. The test isolates observed elongated oval in shape while reference strain was oval and ranging from 3.80 to 4.90 m in length and 2.60 to 3.05 m in width. The ribosomal DNA region 'IGS' of test isolates assessed by PCR amplification, followed by cloning and sequencing. IGS sequence and phylogenetic analysis of test microsporidian isolates showed very close relationship with three Nosema references species: N. philosamia, N. antheraea isolated from Philosamia cynthia ricini and Antheraea perny in China respectively and N. disstriae from Malacosma disstriae in Canada. The clustering pattern of dendogram reveals all test isolates appear distinct from Nosema std. (NIK-1s_mys) India used as reference strain in the study. The result suggests IGS indeed a suitable and highly applicable molecular tool for identifying and characterise the microsporidian isolates in similar population.

(Pattern Search for Transcription Factor Binding Sites in a Promoter Region using Genetic Algorithm) (유전자 알고리즘을 이용한 프로모터 영역의 전사인자 결합부위 패턴 탐색)

  • 김기봉;공은배
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.5_6
    • /
    • pp.487-496
    • /
    • 2003
  • The promoter that plays a very important role in gene expression as a signal part has various binding sites for transcription factors. These binding sites are located on various parts in promoter region and have highly conserved consensus sequence patterns. This paper presents a new method for the consensus pattern search in promoter regions using genetic algorithm, which adopts the assumption of N-occurrence-per-dataset model of MEME algorithm and employs the advantage of Wataru method in determining the pattern length. Our method will be employed by genome researchers who try to predict the promoter region on anonymous DNA sequence and to find out the binding site for a specific transcription factor.

Morphometric and Genetic Variability Among Tylenchulus semipenetrans Populations from Citrus Growing Area in Korea

  • Park, Byeong-Yong;Park, Sun-Nam;Lee, Jae-Kook;Bae, Chang-Hwan
    • The Plant Pathology Journal
    • /
    • v.25 no.3
    • /
    • pp.236-240
    • /
    • 2009
  • Tylenchulus semipenetrans, citrus nematode is an important phytopathogenic nematode and responsible for serious damage on citrus. However, little information is available about genetic variability of T. semipenetrans among different populations with variation of conventional diagnostic characteristics. In this study, we compared the morphometric and genetic characteristics among different populations. The mature female of T. semipenetrans collected in this study had thicker cuticle than those in the previous studies. In comparative sequence analysis of T. semipenetrans populations obtained from Jeju in Korea, we observed genetic variations within clones generated from single individuals. To determine whether variability among copies of nuclear ribosomal DNA sequences exists in the genome of T. semipenetrans, PCR-RFLP technique from individuals of Korean isolates with MseI and MspI restriction enzymes was used to prove experimentally that all populations have intra-specific variations. Restriction enzyme digestion created several fragments on 3.0% agarose gel corresponding to several haplotypes in all populations, though some populations displayed fragment deletion. The total length of fragments was larger than before digestion, indicating sequence heterogeneity within the genome of T. semipenetrans.