DOI QR코드

DOI QR Code

CAPS Marker Linked to Tomato Hypocotyl Pigmentation

  • Received : 2011.07.13
  • Accepted : 2011.10.11
  • Published : 2012.02.29

Abstract

Tomato hypocotyl can generally be one of two colors, purple or green. Genetically, this trait is controlled by a single dominant gene. Hypocotyl tissue specific color expression is one of many visible genetic marker sources used to select tomato progeny. However, the visible marker does not show a clear distinction between homozygous genotype and heterozygous genotype from the breeding lines. Therefore, to identify a hypocotyl pigmentation related marker, we screened DNA polymorphisms in thirteen tomato lines showing purple or green hypocotyls. The markers used for screening consisted of primer set information obtained from anthocyanin related genes, conserved ortholog set II (COS II) marker sets localized near anthocyanin related genes, and restriction fragment length polymorphism (RFLP) markers localized near COS II markers, which produce polymorphisms between purple and green tomatoes. One primer from a RFLP fragment resulted in a polymorphism on agarose gel electrophoresis. From the RFLP fragment, a cleaved amplified polymorphic sequence (CAPS) marker was developed to distinguish between purple and green hypocotyls. The genotypes of 135 $F_2$ individuals were analyzed using the CAPS marker, and among them, 132 individuals corresponded to the phenotypes of hypocotyl pigmentation.

Keywords

References

  1. Bongue-Bartelsman, M., S.D. O'Neill, Y. Tong, and J.I. Yoder. 1994. Characterization of the gene encoding dihydroflavonol 4-reductase in tomato. Gene 138:153-157. https://doi.org/10.1016/0378-1119(94)90799-4
  2. Borovsky, Y., M. Oren-Shamir, R. Ovadia, W. de Jong, and I. Paran. 2004. The A locus that controls anthocyanin acculmulation in pepper encodes a MYB transcription factor homologous to Anthocyanin2 of Petunia. Theor. Appl. Genet. 109:23-29. https://doi.org/10.1007/s00122-004-1625-9
  3. Boudry, P., R. Wieber, P. Saumitou-Laprade, L. Pillen, H. van Dijk, and C. Jung. 1994. Identification of RFLP markers closely linked to the bolting gene B and their significance for the study of the annual habit in beets (Beta vulgaris L.). Theor. Appl. Genet. 88:852-858. https://doi.org/10.1007/BF01253996
  4. Brugliera, F., T.A. Holton, T.W. Stevenson, E. Farcy, C. Lu, and E.C. Cornish. 1994. Isolation and characterization of a cDNA clone corresponding to the Rt locus of Petunia hybrid. Plant J. 5:81-92. https://doi.org/10.1046/j.1365-313X.1994.5010081.x
  5. Choi, S.H., S.K. Green, and D.R. Lee. 1989. Linkage relationship between two genes conferring resistance to peanut stripe virus and soybean mosaic. Euphytica 44:163-166. https://doi.org/10.1007/BF00022612
  6. de Jong, W.S., N.T. Eannetta, D.M. de Jong, and M. Bodis. 2004. Candidate gene analysis of anthocyanin pigmentation loci in the Solanaceae. Theor. Appl. Genet. 108:423-432. https://doi.org/10.1007/s00122-003-1455-1
  7. Kang, B.C., S.H. Nahm, J.H. Huh, H.S. Yoo, J.W. Yu, M.H. Lee, and B.D. Kim. 2001. An interspecific (Capsicum annuum ${\times}$ C. chinense) $F_{2}$ linkage map in pepper using RFLP and AFLP markers. Theor. Appl. Genet. 102:531-539. https://doi.org/10.1007/s001220051678
  8. Kim, H., H. Lee, J.Y. Hyun, D. Won, D.O. Hong, H. Cho, K.A. Lee, N.H. Her, J.H. Lee, and C.H. Harn. 2011. Application of disease resistance markers for developing elite tomato varieties and lines. Kor. J. Hort. Sci. Technol. 29:336-344.
  9. Kosambi, D.D. 1944. The estimation of map distance from recombination values. Ann. Eugen. 12:172-175. https://doi.org/10.1111/j.1469-1809.1943.tb02321.x
  10. Kroon, J., E. Souer, A. de Graaff, Y. Xue, J. Mol, and R. Koes. 1994. Cloning and structural analysis of the anthocyanin pigmentation locus Rt of Petunia hybrida: characterization of insertion sequences in two mutant alleles. Plant J. 5:69-80. https://doi.org/10.1046/j.1365-313X.1994.5010069.x
  11. Leckie, F., B. Mattei, C. Capodicasa, A. Hemmings, L. Nuss, B. Aracri, G. de Lorenzo, and F. Cervone. 1999. The specificity of polygalacturonase-inhibiting protein (PGIP): A single amino acid substitution in the solvent-exposed $\beta$-strand/ $\beta$-turn region of the leucine-rich repeats (LRRs) confers a new recognition capability. EMBO 18:2352-2363. https://doi.org/10.1093/emboj/18.9.2352
  12. Mathews, H., S.K. Clendennen, C.G. Caldwell, X.L. Liu, K. Connors, N. Matheis, D.K. Schuster, D.J. Menasco, W. Wagoner, J. Lightner, and D.R. Wagner. 2003. Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport. Plant Cell 15:689-1703.
  13. Noda, Y., T. Kneyuki, K. Igarashi, A. Mori, and L. Packer. 2000. Antioxidant activity of nasunin, an anthocyanin in eggplant peels. Toxicology 148:119-123. https://doi.org/10.1016/S0300-483X(00)00202-X
  14. O'Neill, S.D., Y. Tong, B. Spörlein, G. Forkmann, and J.I. Yoder. 1990. Molecular genetic analysis of chalcone synthase in Lycopersicon esculentum and an anthocyanin-deficient mutant. Mol. Gen. Genet. 224:279-288. https://doi.org/10.1007/BF00271562
  15. Quattrocchio, F., J.F. Wing, H. Leppen, J. Mol, and R.E. Koes. 1993. Regulatory genes controlling anthocyanin pigmentation are functionally conserved among plant species and have distinct sets of target genes. Plant Cell 5:1497-1512. https://doi.org/10.1105/tpc.5.11.1497
  16. Sheoran, I.S., T. Dumonceaux, R. Datla, and V.K. Sawhney. 2006. Anthocyanin accumulation in the hypocotyl of an ABAover producing male-sterile tomato (Lycopersicon esculentum) mutant. Physiologia Plantarum 127:681-689. https://doi.org/10.1111/j.1399-3054.2006.00697.x
  17. Schiex, T. and C. Gaspin. 1997. CARTHAGENE: Constructing and joining maximum likelihood genetic maps. Fifth Intl. Conf. on Intelligent Systems for Mol. Biol. Porto Carras Halkidiki Greece, p. 258-267.
  18. Tanksley, S.D., M.W. Ganal, J.P. Prince, M.C. de-Vicente, M.W. Bonierbale, P. Broun, T.M. Fulton, J.J. Giovannoni, S. Grandillo, G.B. Martin, R. Messeguer, J.C. Miller, L. Miller, A.H. Paterson, O. Pineda, M.S. Roder, R.A. Wing, W. Wu, and N.D. Young. 1992. High density molecular linkage maps of the tomato and potato genomes. Genetics 132:1141-1160.
  19. Vakalounakis, D.J., H. Laterrot, A. Moretti, E.K. Ligoxigakis, and K. Smardas. 1997. Linkage between Frl (Fusarium oxysporum f.sp. radicislycopersici resistance) and Tm-2 (tobacco mosaic virus resistance-2) loci in tomato (Lycopersicon esculentum). Ann. Appl. Biol. 130:319-323. https://doi.org/10.1111/j.1744-7348.1997.tb06835.x
  20. Vuong, T.D. and J.E. Harper. 2000. Inheritance and allelism analysis of hypernodulating genes in the NOD3-7 and NOD2-4 soybean mutants. Crop Sci. 40:700-703. https://doi.org/10.2135/cropsci2000.403700x
  21. Weiss, D., A.H. van der Luit, J.T. Kroon, J.N. Mol, and J.M. Kooter. 1993. The petunia homologue of the Antirrhinum majus candi and Zea mays A2 flavonoid genes: Homology of flavonone 3-hydroxylase and ethylene-forming enzyme. Plant Mol. Biol. 22:893-897. https://doi.org/10.1007/BF00027374