• 제목/요약/키워드: separable Hilbert space

검색결과 55건 처리시간 0.026초

Operators on a finite dimensional space

  • Ko, Eungil
    • 대한수학회보
    • /
    • 제34권1호
    • /
    • pp.19-28
    • /
    • 1997
  • Let $H$ and $K$ be separable, complex Hilbert spaces and $L(H, K)$ denote the space of all linear, bounded operators from $H$ to $K$. If $H = K$, we write $L(H)$ in place of $L(H, K)$. An operator $T$ in $L(H)$ is called hyponormal if $TT^* \leq T^*T$, or equivalently, if $\left\$\mid$ T^*h \right\$\mid$ \leq \left\$\mid$ Th \right\$\mid$$ for each h in $H$. In [Pu], M. Putinar constructed a universal functional model for hyponormal operators.

  • PDF

A BERBERIAN TYPE EXTENSION OF FUGLEDE-PUTNAM THEOREM FOR QUASI-CLASS A OPERATORS

  • Kim, In Hyoun;Jeon, In Ho
    • Korean Journal of Mathematics
    • /
    • 제16권4호
    • /
    • pp.583-587
    • /
    • 2008
  • Let $\mathfrak{L(H)}$ denote the algebra of bounded linear operators on a separable infinite dimensional complex Hilbert space $\mathfrak{H}$. We say that $T{\in}\mathfrak{L(H)}$ is a quasi-class A operator if $$T^*{\mid}T^2{\mid}T{{\geq}}T^*{\mid}T{\mid}^2T$$. In this paper we prove that if A and B are quasi-class A operators, and $B^*$ is invertible, then for a Hilbert-Schmidt operator X $$AX=XB\;implies\;A^*X=XB^*$$.

  • PDF

ON THE SEMI-HYPONORMAL OPERATORS ON A HILBERT SPACE

  • Cha, Hyung-Koo
    • 대한수학회논문집
    • /
    • 제12권3호
    • /
    • pp.597-602
    • /
    • 1997
  • Let H be a separable complex Hilbert space and L(H) be the *-algebra of all bounded linear operators on H. For $T \in L(H)$, we construct a pair of semi-positive definite operators $$ $\mid$T$\mid$_r = (T^*T)^{\frac{1}{2}} and $\mid$T$\mid$_l = (TT^*)^{\frac{1}{2}}. $$ An operator T is called a semi-hyponormal operator if $$ Q_T = $\mid$T$\mid$_r - $\mid$T$\mid$_l \geq 0. $$ In this paper, by using a technique introduced by Berberian [1], we show that the approximate point spectrum $\sigma_{ap}(T)$ of a semi-hyponomal operator T is empty.

  • PDF

SUPERCYCLICITY OF JOINT ISOMETRIES

  • ANSARI, MOHAMMAD;HEDAYATIAN, KARIM;KHANI-ROBATI, BAHRAM;MORADI, ABBAS
    • 대한수학회보
    • /
    • 제52권5호
    • /
    • pp.1481-1487
    • /
    • 2015
  • Let H be a separable complex Hilbert space. A commuting tuple $T=(T_1,{\cdots},T_n)$ of bounded linear operators on H is called a spherical isometry if $\sum_{i=1}^{n}T^*_iT_i=I$. The tuple T is called a toral isometry if each $T_i$ is an isometry. In this paper, we show that for each $n{\geq}1$ there is a supercyclic n-tuple of spherical isometries on $\mathbb{C}^n$ and there is no spherical or toral isometric tuple of operators on an infinite-dimensional Hilbert space.

COMPACT INTERPOLATION ON AX = Y IN A TRIDIAGONAL ALGEBRA ALGL

  • Kang, Joo-Ho
    • Journal of applied mathematics & informatics
    • /
    • 제19권1_2호
    • /
    • pp.447-452
    • /
    • 2005
  • Given operators X and Y on a Hilbert space H, an interpolating operator is a bounded operator A such that AX = Y. In this article, we investigate compact interpolation problems for vectors in a tridiagonal algebra. Let L be a subspace lattice acting on a separable complex Hilbert space H and Alg L be a tridiagonal algebra. Let X = $(x_{ij})\;and\;Y\;=\;(y_{ij})$ be operators acting on H. Then the following are equivalent: (1) There exists a compact operator A = $(x_{ij})$ in AlgL such that AX = Y. (2) There is a sequence {$\alpha_n$} in $\mathbb{C}$ such that {$\alpha_n$} converges to zero and $$y_1\;_j=\alpha_1x_1\;_j+\alpha_2x_2\;_j\;y_{2k}\;_j=\alpha_{4k-1}x_{2k\;j}\;y_{2k+1\;j}=\alpha_{4k}x_{2k\;j}+\alpha_{4k+1}x_{2k+1\;j}+\alpha_{4k+2}x_{2k+2\;j\;for\;all\;k\;\epsilon\;\mathbb{N}$$.

ON UNBOUNDED SUBNOMAL OPERATORS

  • Jin, Kyung-Hee
    • 대한수학회보
    • /
    • 제30권1호
    • /
    • pp.65-70
    • /
    • 1993
  • In this paper we will extend some notions of bounded linear operators to some unbounded linear operators. Let H be a complex separable Hilbert space and let B(H) denote the algebra of bounded linear operators. A closed densely defind linear operator S in H, with domain domS, is called subnormal if there is a Hilbert space K containing H and a normal operator N in K(i.e., $N^{*}$N=N $N^*/)such that domS .subeq. domN and Sf=Nf for f .mem. domS. we will show that the Radjavi and Rosenthal theorem holds for some unbounded subnormal operators; if $S_{1}$ and $S_{2}$ are unbounded subnormal operators on H with dom $S_{1}$= dom $S^{*}$$_{1}$ and dom $S_{2}$=dom $S^{*}$$_{2}$ and A .mem. B(H) is injective, has dense range and $S_{1}$A .coneq. A $S^{*}$$_{2}$, then $S_{1}$ and $S_{2}$ are normal and $S_{1}$.iden. $S^{*}$$_{2}$.2}$.X>.

  • PDF

WEAK CONVERGENCE THEOREMS IN FEYNMAN'S OPERATIONAL CALCULI : THE CASE OF TIME DEPENDENT NONCOMMUTING OPERATORS

  • Ahn, Byung Moo
    • 충청수학회지
    • /
    • 제25권3호
    • /
    • pp.531-541
    • /
    • 2012
  • Feynman's operational calculus for noncommuting operators was studied by means of measures on the time inteval. And various stability theorems for Feynman's operational calculus were investigated. In this paper we see the time-dependent stability properties when the operator-valued functions take their values in a separable Hilbert space.

A geometric criterion for the element of the class $A_{1,aleph_0 $(r)

  • Kim, Hae-Gyu;Yang, Young-Oh
    • 대한수학회지
    • /
    • 제32권3호
    • /
    • pp.635-647
    • /
    • 1995
  • Let $H$ denote a separable, infinite dimensional complex Hilbert space and let $L(H)$ denote the algebra of all bounded linear operators on $H$. A dual algebra is a subalgebra of $L(H)$ that contains the identity operator $1_H$ and is closed in the $weak^*$ operator topology on $L(H)$. For $T \in L(H)$, let $A_T$ denote the smallest subalgebra of $L(H)$ that contains T and $1_H$ and is closed in the $weak^*$ operator topology.

  • PDF

A functional central limit theorem for positively dependent random vectors

  • Kim, Tae-Sung;Baek, Jong-Il
    • 대한수학회논문집
    • /
    • 제10권3호
    • /
    • pp.707-714
    • /
    • 1995
  • In this note, we extend the concepts of linearly positive quadrant dependence to the random vectors and prove a functional central limit theorem for positively quadrant dependent sequence of $R^d$-valued or separable Hilbert space valued random elements which satisfy a covariance summability condition. This result is an extension of a functional central limit theorem for weakly associated random vectors of Burton et al. to positive quadrant dependence case.

  • PDF

A NOTE ON WEYL'S THEOREM FOR *-PARANORMAL OPERATORS

  • Kim, An-Hyun
    • 대한수학회논문집
    • /
    • 제27권3호
    • /
    • pp.565-570
    • /
    • 2012
  • In this note we investigate Weyl's theorem for *-paranormal operators on a separable infinite dimensional Hilbert space. We prove that if T is a *-paranormal operator satisfying Property $(E)-(T-{\lambda}I)H_T(\{{\lambda}\})$ is closed for each ${\lambda}{\in}{\mathbb{C}}$, where $H_T(\{{\lambda}\})$ is a local spectral subspace of T, then Weyl's theorem holds for T.