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SUPERCYCLICITY OF JOINT ISOMETRIES
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Abstract. Let H be a separable complex Hilbert space. A commut-
ing tuple T = (T1, . . . , Tn) of bounded linear operators on H is called a
spherical isometry if

∑
n

i=1 T
∗
i
Ti = I. The tuple T is called a toral isom-

etry if each Ti is an isometry. In this paper, we show that for each n ≥ 1

there is a supercyclic n-tuple of spherical isometries on Cn and there is no
spherical or toral isometric tuple of operators on an infinite-dimensional
Hilbert space.

1. Introduction

An n-tuple of operators is a finite sequence of length n of commuting bounded
linear operators T1, T2, . . . , Tn acting on a Hilbert space H . For an n-tuple
T = (T1, T2, . . . , Tn), if there exists an element x ∈ H such that orb(T, x) =

{Sx : S ∈ FT } where FT = {T k1

1 T k2

2 · · ·T kn
n : ki ≥ 0, i = 1, 2, . . . , n}, is

dense in H then x is called a hypercyclic vector for T , and T is said to be a
hypercyclic n-tuple of operators. A vector x ∈ H is called a supercyclic vector
for T if the set {λSx : S ∈ FT , λ ∈ C} is dense in H , and T is said to be
a supercyclic n-tuple of operators. These definitions generalize the notions of
hypercyclicity and supercyclicity of a single operator to a tuple of operators.
Hypercyclicity and supercyclicity of tuples of operators have been investigated
in ([3], [4], [6], [7]). On the other hand, spherical isometries are a consider-
able part of tuples of operators. The authors in [5] proved that isometries on
Hilbert spaces with dimension more than one are not supercyclic. Recently,
this fact has been proved for m-isometric operators which are a generalization
of isometric operators in some sense [2]. In this paper we see that spherical
isometries are not supercyclic on infinite-dimensional Hilbert spaces. Let A be
a matrix we denote by AT and detA the transpose and the determinant of A
respectively.

In Section 2, we show that there is no supercyclic n-tuple of diagonalizable
matrices on Cn+1. The main result of this section is that there is a supercyclic
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p-tuple of spherical isometries on Cp, p ≥ 1. Also, it is proved that there is
no spherical or toral isometric tuple of operators on an infinite-dimensional
Hilbert space.

2. Supercyclicity of spherical isometries

In [4] it is shown that for each n ≥ 1, there exists a hypercyclic (n+1)-tuple
of diagonal matrices on C

n, and there is no hypercyclic n-tuple of diagonalizable
matrices on Cn. We give the following result which is a generalization of [4,
Theorem 3.6]. The technique employed in the proof is due to N. Feldman.

Theorem 1. There is no supercyclic n-tuple of diagonalizable matrices on

Cn+1.

Proof. The proof is on the same lines as for the case n = 2. We assume that
there exists a supercyclic 2-tuple (A,B) of diagonalizable matrices on C

3. We
can assume that the matrices A and B are diagonal thanks to simultaneously
diagonalizability. Let

A =





a1 0 0
0 a2 0
0 0 a3



 , B =





b1 0 0
0 b2 0
0 0 b3





and ν =
[

α
β
γ

]

be a supercyclic vector for the 2-tuple (A,B). Therefore, if

E =











λan1 b
k
1α

λan2 b
k
2β

λan3 b
k
3γ



 : λ ∈ C, n, k ≥ 0







= {λAnBkν : λ ∈ C, n, k ≥ 0},

then E = C3 which in turn implies that α, β, γ, ai and bi for i = 1, 2, 3 are
nonzero. Since the 2-tuple ( 1

a1

A, 1
b1
B) is also supercyclic, we may assume that

a1 = b1 = 1. On the other hand, by applying the invertible matrix




α−1 0 0
0 β−1 0
0 0 γ−1





to the set E we conclude that F = C3 where

F =











λ
λan2 b

k
2

λan3 b
k
3



 : λ ∈ C, n, k ≥ 0







.

Now by applying the function log |z| to each coordinate of the set F we have
G = R3 where

G =











log |λ|
n log |a2|+ k log |b2|+ log |λ|
n log |a3|+ k log |b3|+ log |λ|



 : n, k ≥ 0, λ ∈ C







.
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Let

S =











n
k

log |λ|



 : n, k ≥ 0, λ ∈ C







and

T =





0 0 1
log |a2| log |b2| 1
log |a3| log |b3| 1





then T is a linear transformation from R3 to R3 such that T (S) is dense in R3

thanks to G = R3, hence T is onto which implies that T is invertible. Therefore,
S = T−1(T (S)) must be dense in R3 which is impossible. �

To prove the main result of this section, we need the following lemmas.

Lemma 1. For n > 1 let x1, x2, . . . , xn−1 and y1, y2, . . . , yn−1 be complex

numbers. If

Mn =





















1 1 1 1 · · · 1
x1 y1 1 1 · · · 1
x2 1 y2 1 · · · 1
...

. . .

xn−1 1 1 1 · · · yn−1





















n×n

is invertible, then the solution of the equation MnZ =
[

1 1 · · · 1
]T

,

called Zn =
[

z1n z2n · · · znn
]T

, satisfies the following recursive formula

zin =







(yn−1−1)zi
n−1

(yn−1−1)+(1−xn−1)z1

n−1

, 1 ≤ i ≤ n− 1

(1−xn−1)z
1

n−1

(yn−1−1)+(1−xn−1)z1

n−1

, i = n.

Proof. By Crammer’s rule we have zin =
detMi

n

detMn
, where M i

n is the matrix ob-

tained from Mn by replacing its ith column by
[

1 1 · · · 1
]T

. Expand-

ing detMn and detM i
n along their nth rows, we can obtain the following re-

cursive formulae:

detMn = (yn−1 − xn−1z
1
n−1 −

n−1
∑

k=2

zkn−1) detMn−1,

detM i
n =







(yn−1 − 1) detM i
n−1, 1 ≤ i ≤ n− 1

(1− xn−1z
1
n−1 −

n−1
∑

k=2

zkn−1) detMn−1, i = n.

Now an easy computation will give the conclusion; just note that
∑n−1

i=1 zin−1 =
1. �
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Lemma 2. Suppose that p ≥ 3 is an integer, t1, . . . , tp−1 are real numbers and

f(p) = 2− p+
∑p−1

i=1 ti. Then the matrix

Mp =















1 1 1 · · · 1
t1 b 1 · · · 1
t2 1 b · · · 1
...

...
. . .

...

tp−1 1 1 · · · b















p×p

is invertible if and only if b /∈ {1, f(p)}.

Proof. Putting mp = detMp and writing the expansion of mp via the first

column of Mp, we have mp = bp−1 − cp−1

∑p−1
i=1 ti where

bp−1 = det















b 1 1 · · · 1
1 b 1 · · · 1
1 1 b · · · 1
...

...
. . .

...
1 1 1 · · · b















(p−1)×(p−1)

and

cp−1 = det















1 1 1 · · · 1
1 b 1 · · · 1
1 1 b · · · 1
...

...
. . .

...
1 1 1 · · · b















(p−1)×(p−1)

.

Multiplying the first row of the matrix in cp−1 by −1 and adding it to all
other rows, we get cp−1 = (b − 1)p−2. On the other hand, evaluating bp−1 by
using the first column of the relevant matrix, we find the recursive formula
bp−1 = b.bp−2 − (p− 2)cp−2 = b.bp−2 − (p− 2)(b − 1)p−3. Now, an easy use of
the mathematical induction implies that bp−1 = (b−1)p−2(b+p−2) and hence
we have

mp = (b− 1)p−2(b − f(p)).

Thus, the proof is completed. �

In the sequel, some comments are in order. Let f : [0, 1] → [0, 1] be de-
fined by f(x) = frac(10x) where frac(x) denotes the fractional part of real
number x. For each fixed n ∈ N, let F2n : [0, 1]2n −→ [0, 1]2n be defined
by F2n(x1, x2, . . . , x2n) = (f(x1), f(x2), . . . , f(x2n)). By Proposition 3.1 of [4],
there exists (x1, x2, . . . , x2n) ∈ [0, 1]2n which has a dense orbit under F2n. Let

△n = {x ∈ [0, 1]2n : orb(F2n,x) = [0, 1]2n}
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and

△n
1

2

=





























exp(αq1x1 + 2πix2)
exp(αq2x3 + 2πix4)

...
exp(αqnx2n−1 + 2πix2n)











: (x1, x2, . . . , x2n) ∈ △n, q ∈ N, α = ln 2



















.

By Corollary 3.5 of [4], for every (a1, a2, . . . , an) ∈ △n
1

2

, |ai| > 1 (i = 1, 2, . . . , n).

Moreover, if An and Bnk (1 ≤ k ≤ n) are diagonal matrices with, respectively,
the diagonals (a1, a2, . . . , an) and (b1k, b2k, . . . , bnk) where bkk = 1

2 and bik = 1
(i 6= k), then the (n + 1)-tuple (An, Bn1, . . . , Bnn) is hypercyclic on Cn with

the hypercyclic vector ν =
[

1 1 · · · 1
]T

. Hence the set

E =





























2−k1a1
m

2−k2a2
m

...
2−knan

m











: m ≥ 0, ki ≥ 0, i = 1, 2, . . . , n



















is dense in Cn.

Theorem 2. There is a supercyclic spherical isometric p-tuple on Cp, p ≥ 1.

Proof. The case p = 1 is obvious. Now, let p = n + 1 ≥ 2 and consider the
p-tuple (A′

n, B
′

n1, . . . , B
′

nn) of diagonal matrices on Cp, where A′

n and B′

nk (1 ≤
k ≤ n) have, respectively, the diagonals (1, a1, a2, . . . , an) and (1, b1k, . . . , bnk).

Also, let ν′ =
[

1 1 · · · 1
]T

. Then the density of E in Cn implies that

{λ(A′

n)
k1 (B′

n1)
k2 · · · (B′

nn)
kpν′ : λ ∈ C, ki ≥ 0, i = 1, 2, . . . , n+ 1}

is dense in G = Cp − {(0, λ1, . . . , λn) : λi ∈ C, i = 1, 2, . . . , n}. But G is also
dense in Cp, so we conclude that the vector ν′ is supercyclic for the p-tuple
(A′

n, B
′

n1, . . . , B
′

nn). We claim that there are scalars α1, α2, . . . , αp such that
the p-tuple (α1A

′

n, α2B
′

n1, . . . , αpB
′

nn) is a supercyclic spherical isometry on
Cp. For p = 2 if |a1| > 1 and we put

α1 =

√

3

4|a1|2 − 1
, α2 =

√

4(|a1|2 − 1)

4|a1|2 − 1
, A′

1 =

[

1 0
0 a1

]

, B′

11 =

[

1 0
0 1

2

]

,

then (α1A
′

1, α2B
′

11) is a spherical isometric 2-tuple on C2. Let p = n + 1 ≥
3. The p-tuple (α1A

′

n, α2B
′

n1, . . . , αpB
′

nn) is spherical isometry if and only

if there is a solution Zp =
[

z1p · · · zpp
]T

for the equation MpZ =
[

1 1 · · · 1
]T

, where

Mp =















1 1 1 · · · 1
|a1|

2 1
4 1 · · · 1

|a2|
2 1 1

4 · · · 1
...

...
. . .

...
|ap−1|

2 1 1 · · · 1
4














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and zip > 0 for i = 1, 2, . . . , p. Note that by Lemma 2, Mp is invertible for

all p ≥ 3. Suppose that (a1, a2, . . . , ap) ∈ △p
1

2

is the point corresponding to

(x1, x2, . . . , x2p) ∈ △p. Since (x1, x2, . . . , x2p) has a dense orbit under F2p, it is
easy to see that (x1, x2, . . . , x2p−2) has a dense orbit under F2p−2 and clearly

(a1, a2, . . . , ap−1) ∈ △p−1
1

2

is the point corresponding to (x1, x2, . . . , x2p−2) ∈

△p−1. Therefore, by Lemma 1, the existence of zip > 0, i = 1, 2, . . . , p, such

that MpZp =
[

1 1 · · · 1
]T

, depends on the existence of zip−1 > 0,

i = 1, 2, . . . , p− 1, such that Mp−1Zp−1 =
[

1 1 · · · 1
]T

and obviously,
this backward process can be continued to conclude finally that the existence
of zip > 0, for i = 1, 2, . . . , p depends on the existence of zi2 > 0, i = 1, 2, such

that M2Z2 = [ 11 ] , which is proved. �

We finish this note by giving the following result which is a consequence of
Example 2.11 and Corollary 4.2 of [4].

Proposition 1. There is no supercyclic spherical or toral isometry on an

infinite-dimensional Hilbert space.

Proof. We prove the assertion for spherical isometries. The same argument
gives the proof for toral isometries. Suppose that H is an infinite-dimensional
Hilbert space and (A1, A2, . . . , An) is a supercyclic spherical isometry on H .
By a result of [1], the tuple (A1, A2, . . . , An) is subnormal; that is, there is
a Hilbert space K containing H and a commuting tuple (S1, S2, . . . , Sn) of
normal operators on K such that Ai = Si |H for i = 1, 2, . . . , n. Let θ be
an irrational multiple of π and a, b be two relatively prime integers greater
than one. Moreover, suppose that I is the identity operator on H . By Corol-

lary 4.2 of [4] the set {ak1eik2θ

bk3
: k1, k2, k3 ≥ 0} is dense in C; thus, the

supercyclicity of (A1, A2, . . . , An) implies the hypercyclicity of (n + 3)-tuple
(aI, 1

b
I, eiθI, A1, A2, . . . , An), but this is a subnormal tuple and, by Corollary

3.9 of [4], can not be hypercyclic. �

Remark 1. In fact the proof of Proposition 1 shows that on an infinite-dimen-
sional Hilbert space. There is no supercyclic n-tuple of subnormal operators
with commuting normal extensions.
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