• 제목/요약/키워드: sentiment

검색결과 974건 처리시간 0.024초

그래프 기반 준지도 학습 방법을 이용한 특정분야 감성사전 구축 (The Construction of a Domain-Specific Sentiment Dictionary Using Graph-based Semi-supervised Learning Method)

  • 김정호;오연주;채수환
    • 감성과학
    • /
    • 제18권1호
    • /
    • pp.103-110
    • /
    • 2015
  • 감성어휘는 텍스트로 감성을 표현하거나, 반대로 텍스트로부터 감성을 인식하기 위한 특징으로써 감성분류 연구에 필수요소이다. 본 연구는 감성어휘의 집합인 감성사전을 자동으로 구축하는 그래프 기반 준지도 학습 방법을 제안한다. 특히 감성어휘가 사용되어지는 분야에 따라 그 감성이 변하는 중의성 문제를 고려하여 분야 별 감성사전을 구축하고자 한다. 제안하는 방법은 어휘와 어휘들 간의 밀접도를 토대로 그래프를 구성하고, 사전에 학습 된 일부 소량의 감성어휘들의 감성을 구성된 그래프 전체에 전파하는 방식으로 모든 어휘의 감성을 추론한다. 감성어휘는 대표적으로 감성단어와 감성구문이 있으며, 본 연구에서는 이들 각각에 대한 그래프를 구성하고 감성을 추론하여 전체 감성사전을 구축하였다. 제안하는 방법의 성능을 검증하기 위해 영화평 분야의 감성사전을 구축하고, 이를 이용한 영화평 감성분류 실험을 수행하였다. 그 결과 기존 범용 감성사전의 어휘들을 이용한 감성분류보다 더 높은 분류 성능을 확인하였다.

Extracting Multiword Sentiment Expressions by Using a Domain-Specific Corpus and a Seed Lexicon

  • Lee, Kong-Joo;Kim, Jee-Eun;Yun, Bo-Hyun
    • ETRI Journal
    • /
    • 제35권5호
    • /
    • pp.838-848
    • /
    • 2013
  • This paper presents a novel approach to automatically generate Korean multiword sentiment expressions by using a seed sentiment lexicon and a large-scale domain-specific corpus. A multiword sentiment expression consists of a seed sentiment word and its contextual words occurring adjacent to the seed word. The multiword sentiment expressions that are the focus of our study have a different polarity from that of the seed sentiment word. The automatically extracted multiword sentiment expressions show that 1) the contextual words should be defined as a part of a multiword sentiment expression in addition to their corresponding seed sentiment word, 2) the identified multiword sentiment expressions contain various indicators for polarity shift that have rarely been recognized before, and 3) the newly recognized shifters contribute to assigning a more accurate polarity value. The empirical result shows that the proposed approach achieves improved performance of the sentiment analysis system that uses an automatically generated lexicon.

Stock Market Sentiment and Stock Returns

  • Kim, Taehyuk;Ryu, Hoyoung
    • Journal of the Korean Data Analysis Society
    • /
    • 제20권6호
    • /
    • pp.2759-2769
    • /
    • 2018
  • The behavioral finance view on the existence of asset pricing anomalies is based on two factors: investors' sentiment and limits to arbitrage. This paper tries to examine the effect of investors' sentiment on the stock price in the Korean stock market. In order to measure investors' sentiment, we constructed the sentiment index using principal component of five sentiment variables. By using sentiment index as an additional independent variable to three risk factors, impacts of the sentiment index on individual stocks and 25 portfolios sorted by BM-size are examined. Main results found are as follows: 1) not only all three risk factors show positive impacts on the return of individual stock, but also the sentiment index has a positive impact. SI alone explains 15% of individual return variation. 2) among four independent variables, the most important factor turned out to be the market risk factor and investors' sentiment has better explanatory power on stock price than the size effect. 3) after controlling the market risk factor, the coefficient of the sentiment index for the smallest size and highest book/market value portfolios is significantly positive. 4) all the coefficients of the sentiment index for 25 portfolios sorted by BM-size have significant positive value after controlling size or (and) value.

감성 패턴을 이용한 영화평 평점 추론 (A Rating Inference of Movie Reviews Using Sentiment Patterns)

  • 김정호;인주호;채수환
    • 감성과학
    • /
    • 제17권1호
    • /
    • pp.71-78
    • /
    • 2014
  • 본 연구는 보다 정확한 텍스트의 감성 분석을 위해 새로운 감성 특징인 감성 패턴을 제안하고, 이를 이용한 영화평 평점 추론에 대해 소개한다. 텍스트 감성 분석은 텍스트에 포함된 감성인 긍정과 부정을 인식하고 분류하는 작업으로, 이를 위해 감성 특징인 감성 단어와 구문 패턴을 이용한다. 텍스트 내에 존재하는 감성 단어와 구문 패턴의 감성을 통해 텍스트 전체의 감성을 분류하는 것이다. 하지만, 기존 감성 분석은 감성 단어와 구문 패턴의 감성을 독립적으로 고려하기 때문에 문장 혹은 글 전체의 감성 정보를 정확히 파악하기 어렵다는 한계를 가지고 있다. 그러므로 본 연구는 기존 감성 특징들을 독립적으로 고려하는 것뿐만 아니라 문장 내에서 출현하는 감성들을 의미적으로 연결하여 하나의 패턴으로 정의한 감성 패턴을 제안하고, 감성 분석의 세부 연구 주제인 평점 추론에 감성 패턴을 새로운 감성 특징으로 사용하였다. 제안하는 감성 패턴의 효과를 검증하기 위해 영화평에 대한 평점 추론 실험을 수행하였다. 감성 패턴을 포함한 모든 감성 특징들을 사전에 정의한 학습 영화평들로부터 추출하고, 이를 확률 기법을 이용해 실험 영화평들의 평점을 추론하였다. 그 결과 감성 패턴을 사용하였을 경우 기존 감성 특징들만 사용했을 때 보다 추론한 평점이 더욱 정확함을 확인하였다.

국내 주요 10대 기업에 대한 국민 감성 분석: 다범주 감성사전을 활용한 빅 데이터 접근법 (Public Sentiment Analysis of Korean Top-10 Companies: Big Data Approach Using Multi-categorical Sentiment Lexicon)

  • 김서인;김동성;김종우
    • 지능정보연구
    • /
    • 제22권3호
    • /
    • pp.45-69
    • /
    • 2016
  • 최근에 빅 데이터를 활용하여 감성을 측정하는 시도가 활발히 이루어지고 있다. 통신 매체와 SNS의 발달로 기업은 국민의 감성을 파악하고 즉시 대응해야할 필요성이 생겼다. 우리나라의 경제는 대기업에 대한 의존도가 높기 때문에 10대 기업에 대한 감성분석은 의미가 있다고 할 수 있다. 이러한 측면에서 본 연구는 다 범주를 기준으로 구축한 감성사전을 활용하여 우리나라 10대 기업에 대한 감성을 분석하였다. 빅 데이터를 이용하여 감성을 분석한 기존의 선행연구는 감성을 차원으로 분류하는 경향이 있다. 차원적 감성으로 감성을 분류하는 것은 분류의 기준이 학술적으로 증명되었기에 감성 분석에 주로 사용되어 왔지만 전문가 정도의 지식이 있어야 분류할 수 있어 보편적인 감성을 대변하는 데 비효과적이기에 보완이 필요하다고 할 수 있다. 개별 범주적 감성은 이 점을 보완할 수 있는 분류 방식으로 일정 수준의 주관성이 개입되지만 보편적으로 느낄 수 있는 감성을 측정하는데 효과적이다. 따라서 본 연구는 보편적인 감성의 측정을 위해 감성을 차원으로 분류하지 않고 개별 범주로 분류하여 9가지 영역으로 나누었다. 선행 연구에서 추출한 9가지 범주에 해당하는 감성 단어에 기초하여 감성사전을 구축하였으며 감성 단어가 검출된 빈도를 기준으로 감성을 분석했다. 대상 데이터는 2014년 1월부터 2016년 1월까지 우리나라 10대 기업에 대하여 축적된 뉴스 데이터이다. 대상 데이터에서 검출된 감성 단어의 빈도를 기준으로 각 기업에 대한 감성 순위를 나누고 분포를 확인하였다. 기업에 따라서 감성이 다를 수 있는지, 특정 사건이 각 기업에 대한 감성에 영향을 줄 수 있는지 가설을 세우고 검정하였다. 결론적으로, 다 범주 감성 사전을 활용한 감성 분석은 기업 간 비교와 시점 간 비교에 유의한 것으로 나타났다. 본 연구는 빅 데이터에 산재해있는 감성을 국민의 시각으로 측정하는 하나의 대안으로서 의의가 있다.

인스타그램 해시태그를 이용한 사용자 감정 분류 방법 (A Method for User Sentiment Classification using Instagram Hashtags)

  • 남민지;이은지;신주현
    • 한국멀티미디어학회논문지
    • /
    • 제18권11호
    • /
    • pp.1391-1399
    • /
    • 2015
  • In recent times, studies sentiment analysis are being actively conducted by implementing natural language processing technologies for analyzing subjective data such as opinions and attitudes of users expressed on the Web, blogs, and social networking services (SNSs). Conventionally, to classify the sentiments in texts, most studies determine positive/negative/neutral sentiments by assigning polarity values for sentiment vocabulary using sentiment lexicons. However, in this study, sentiments are classified based on Thayer's model, which is psychologically defined, unlike the polarity classification used in opinion mining. In this paper, as a method for classifying the sentiments, sentiment categories are proposed by extracting sentiment keywords for major sentiments by using hashtags, which are essential elements of Instagram. By applying sentiment categories to user posts, sentiments can be determined through the similarity measurement between the sentiment adjective candidates and the sentiment keywords. The test results of the proposed method show that the average accuracy rate for all the sentiment categories was 90.7%, which indicates good performance. If a sentiment classification system with a large capacity is prepared using the proposed method, then it is expected that sentiment analysis in various fields will be possible, such as for determining social phenomena through SNS.

감정점수의 전파를 통한 한국어 감정사전 생성 (Generating a Korean Sentiment Lexicon Through Sentiment Score Propagation)

  • 박호민;김창현;김재훈
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제9권2호
    • /
    • pp.53-60
    • /
    • 2020
  • 감정분석은 문서 또는 대화상에서 주어진 주제에 대한 태도와 의견을 이해하는 과정이다. 감정분석에는 다양한 접근법이 있다. 그 중 하나는 감정사전을 이용하는 사전 기반 접근법이다. 본 논문에서는 널리 알려진 영어 감정사전인 VADER를 활용하여 한국어 감정사전을 자동으로 생성하는 방법을 제안한다. 제안된 방법은 세 단계로 구성된다. 첫 번째 단계는 한영 병렬 말뭉치를 사용하여 한영 이중언어 사전을 제작한다. 제작된 이중언어 사전은 VADER 감정어와 한국어 형태소 쌍들의 집합이다. 두 번째 단계는 그 이중언어 사전을 사용하여 한영 단어 그래프를 생성한다. 세 번째 단계는 생성된 단어 그래프 상에서 레이블 전파 알고리즘을 실행하여 새로운 감정사전을 구축한다. 이와 같은 과정으로 생성된 한국어 감정사전을 유용성을 보이려고 몇 가지 실험을 수행하였다. 본 논문에서 생성된 감정사전을 이용한 감정 분류기가 기존의 기계학습 기반 감정분류기보다 좋은 성능을 보였다. 앞으로 본 논문에서 제안된 방법을 적용하여 여러 언어의 감정사전을 생성하려고 한다.

영화평과 평점을 이용한 감성 문장 구축을 통한 영화 평점 추론 (Movie Rating Inference by Construction of Movie Sentiment Sentence using Movie comments and ratings)

  • 오연주;채수환
    • 인터넷정보학회논문지
    • /
    • 제16권2호
    • /
    • pp.41-48
    • /
    • 2015
  • 영화 리뷰 사이트에서 영화 평점은 네티즌들의 주관적 판단으로 결정된다. 이로 인해 그들이 남긴 영화평과 평점 사이의 극성이 서로 불일치하는 경우가 종종 발생한다. 본 논문에서는 이 문제를 해결하기 위해 영화의 평가에 영향을 미치는 감성 문장들의 집합을 만들고, 이들을 영화평에 적용하여 평점을 추론한다. 감성 문장들의 집합을 만들기 위한 과정은 감성 어휘 사전을 구축하는 단계와 감성 문장을 구성하는 단계로 이루어진다. 감성 어휘 사전은 영화평에서 쓰인 형용사와 형용사의 극성을 저장한다. 감성 문장은 영화와 관련된 명사를 주어로 갖고 감성 어휘 사전의 어휘를 서술어로 갖는 문장 구조이다. 감성 문장의 극성과 감성 문장에서 쓰인 서술어의 극성이 다른 문장들은 제거하여 감성 문장들이 감성 어휘 사전 어휘의 극성과 일치되도록 하였다. 영화평에서 쓰인 감성 문장들의 평균 점수를 구하면 영화평이 갖는 감성 점수가 된다. 본 연구 결과를 통해 네티즌들이 매긴 평점에 비해 감성 문장 집합을 적용하여 계산한 영화평의 감성 점수가 영화평에 대한 의견을 더 잘 반영한다는 것을 알 수 있다.

심리학적 감정과 소셜 웹 자료를 이용한 감성의 실증적 분류 (Empirical Sentiment Classification Using Psychological Emotions and Social Web Data)

  • 장문수
    • 한국지능시스템학회논문지
    • /
    • 제22권5호
    • /
    • pp.563-569
    • /
    • 2012
  • 소셜 웹이 확산되면서 오피니언 마이닝 혹은 감성 분석 연구가 주목을 받고 있다. 감성 분석을 위해서는 감성을 판별하기 위한 감성자원이 제공되어야 한다. 기존 감성 분석에서는 감성의 극성에 대한 강도를 표현하는 방법으로 리소스를 구축하고 이를 통하여 의견의 극성을 결정하였다. 본 논문에서는 의견의 극성뿐만 아니라 긍/부정의 근거가 되는 감성의 카테고리를 구성하고자 한다. 본 논문에서는 합리적인 분류를 위하여 심리학적 감정들을 초기 감성으로 정의한다. 그리고 실제로 소셜 웹에서 사용되는 감성의 분포를 얻기 위하여 소셜 웹의 텍스트를 분석하여 감성 정보를 추출한다. 추출한 감성 정보를 이용하여 초기 감성들을 재분류함으로써 소셜 웹을 위한 감성 카테고리를 구성한다. 본 논문에서는 이 방법을 통하여 23개의 감성 카테고리를 제시한다.

한국어 구문분석을 활용한 이유-감성 패턴 기반의 감성사전 구축 (Sentiment Dictionary Construction Based on Reason-Sentiment Pattern Using Korean Syntax Analysis)

  • 김우현;이희정
    • 산업경영시스템학회지
    • /
    • 제46권4호
    • /
    • pp.142-151
    • /
    • 2023
  • Sentiment analysis is a method used to comprehend feelings, opinions, and attitudes in text, and it is essential for evaluating consumer feedback and social media posts. However, creating sentiment dictionaries, which are necessary for this analysis, is complex and time-consuming because people express their emotions differently depending on the context and domain. In this study, we propose a new method for simplifying this procedure. We utilize syntax analysis of the Korean language to identify and extract sentiment words based on the Reason-Sentiment Pattern, which distinguishes between words expressing feelings and words explaining why those feelings are expressed, making it applicable in various contexts and domains. We also define sentiment words as those with clear polarity, even when used independently and exclude words whose polarity varies with context and domain. This approach enables the extraction of explicit sentiment expressions, enhancing the accuracy of sentiment analysis at the attribute level. Our methodology, validated using Korean cosmetics review datasets from Korean online shopping malls, demonstrates how a sentiment dictionary focused solely on clear polarity words can provide valuable insights for product planners. Understanding the polarity and reasons behind specific attributes enables improvement of product weaknesses and emphasis on strengths. This approach not only reduces dependency on extensive sentiment dictionaries but also offers high accuracy and applicability across various domains.