• 제목/요약/키워드: sensorless control

검색결과 866건 처리시간 0.023초

Unity Power Factor Control of Sensorless Switched Reluctance Motor

  • Jeyakumar, A. Ebenezer;Shanmuganandan, K.J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1147-1152
    • /
    • 2004
  • Switched Reluctance Motors have an inexpensive, intrinsic simplicity and low cost that makes them well suited to home appliance and office applications. However the motor suffering with necessity of shaft position sensor, lead to non-linearity of operations. Further, the involvement of static converters deteriorates the operational power factor. Implementation of a sensorless algorithm, can remove the need of position sensors. Also, the drive includes a compact power factor control in the input stage by implementing Zero Current Switching Quasi-Resonant Boost Technology. This paper presented, aims at optimized low line current distortion, high power factor, low cost and a shaft position sensorless Switched Reluctance Motor drive.

  • PDF

Input AC Voltage Sensorless Control Scheme for a Three-Phase PWM Rectifier in Wind Power Generation System

  • Wu, YanJun
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제1권4호
    • /
    • pp.472-476
    • /
    • 2012
  • In this paper, a sensorless control scheme for a three-phase bi-directional voltage-type PWM rectifier in wind power generation system that operates without the input AC voltage sensors (generator side) is described. The basic principles and classification of the PWM rectifier are analyzed, and then the three-phase mathematical model of the input AC voltage sensorless PWM rectifier control system is established. The proposed scheme has been developed in order to lower the cost of the three-phase PWM rectifier but still achieve excellent output voltage regulation, limited current harmonic content, and unity input power factor.

신경망을 이용한 유도전동기 센서리스 벡터제어 (Sensorless Vector Control of Induction Motor Using Neural Networks)

  • 박성욱;최종우;김흥근;서보혁
    • 전기학회논문지P
    • /
    • 제53권4호
    • /
    • pp.195-200
    • /
    • 2004
  • Many kinds of speed sensorless control system of induction motor had been developed. But it is difficult to implement at the real system because of complex algorithm and equations. This paper investigates a novel speed sensorless control of induction motor using neural networks. The proposed control strategy is based on neural networks using stator current and output of neural model based on state observer. The errors between the stator current and the output of neural model are back-propagated to adjust the rotor speed, so that adaptive state variable will coincide with the desired state variable. This algorithm may overcome several shortages of conventional model, such as integrator problems, small EMF at low speed and relatively large sensitivity of stator resistance variation. Also, this paper presents a newly developed optimal equation about the momentum constant and the learning rate. The proposed algorithms are verified through simulation.

Compensation Technique for Current Sensorless Digital Control of Bridgeless PFC Converter under Critical Conduction Mode

  • Kim, Tae-Hun;Lee, Woo-Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권6호
    • /
    • pp.2310-2318
    • /
    • 2018
  • Critical conduction mode (CRM) operation is more efficient than continuous conduction mode (CCM) operation at low power levels because of the valley switching of switches and elimination of the reverse recovery losses of boost diodes. When using a sensorless digital control method, an error occurs between the actual and the estimated current. Because of the error, it operates as CCM or discontinuous conduction mode (DCM) during CRM operation and also has an adverse effect on THD of input current. In this paper, a current sensorless technique is presented in an inverter system using a bridgeless boosted power factor correction converter, and a compensation method is proposed to reduce CRM calculation error. The validity of the proposed method is verified by simulation and experiment.

MRAS를 이용한 유도 전동기의 시정수 보상을 갖는 속도 센서리스 벡터제어 (Sensorless Vector Control System with Compensated Time Constant of Induction Motor Using a MRAS)

  • 임태윤;김동희;황돈하;김민회
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1999년도 전력전자학술대회 논문집
    • /
    • pp.540-543
    • /
    • 1999
  • This paper describes a speed sensorless algorithm for vector control system with compensated stator resistance and rotor time constant of induction motor using a model reference adaptive system(MRAS). The system are composed of two MRAC, one is a rotor speed estimation and a stator resistor identification by back-EMF observer, other is used to identify rotor time constant by magnetizing current observer, so that the estimation can be cover a very low speed range with a robust control. The suggest control strategy and estimation method have been validated by simulation study. In the simulation using Matlab/Simulik, the proposed speed sensorless vector control system are shown to operate very well in spite of variable rotor time constant and load fluctuation.

  • PDF

Speed Sensorless Vector Control for AC servo Motor Using Flux observer

  • Hong, Jeng-pyo;Kwon, Soon-Jae;Hong, Soon-Ill
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권2호
    • /
    • pp.185-191
    • /
    • 2004
  • This study describes the scheme of vector drive system without speed sensor for AC servo motor using theory of a flux observer and based on the field oriented vector control. The new method of speed estimation is presented from operate with the position and magnitude of the secondary flux which obtain from the voltage reference and detected current. As the estimated speed is settled by the flux and the machine-specific parameters. this method don't need to adjust the gain of the parameter. Based on the derived theory for vector control. the scheme for sensorless vector drive of AC servo motor is designed and realized. And the experiment verifies it passable to realize the sensorless vector drive based on a field-oriented type.

Sensorless Control for the Synchronous Reluctance Motor Using Reference Flux Estimation

  • Ahn Joon-Seon;Kim Sol;Kim Yong-Tae;Lee Ju
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제5B권4호
    • /
    • pp.324-330
    • /
    • 2005
  • The complex sensorless control scheme is not practical for use in the field of home appliance systems because it is not economical. Therefore, it is necessary to introduce a simplified sensorless control scheme that is composed of least calculation to estimate the rotor position. This paper presents the principle of the rotor position estimation with comparison of the estimated flux linkage and reference flux linkage. In order to verify the feasibility of the control scheme, ACSL is used for the simulation and TI DSP TMS320F240 is used for the experiment.

신경회로망을 이용한 SRM 센서리스 제어연구 (Sensorless Control of SRM Using Neural Network)

  • 최재동;안재황;성세진
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제50권1호
    • /
    • pp.30-36
    • /
    • 2001
  • This paper introduces a new indirect rotor position estimation algorithm for the SRM sensorless control, based on the magnetizing curves of aligned and unaligned rotor positions. Through the basic test method, the complete SRM magnetizing characterization is first constructed using a neural network training, and then used to estimate the rotor position. And also, the optimal phase is selected by the phase selector. In order to verify this approach, the proposed rotor position estimation algorithm using a neural network learning data is investigated. The experimental results show that the proposed control algorithm can be effectively applied to SRM sensorless control.

  • PDF

약계자 영역에서의 순시무효전력을 이용한 PMSM의 센서리스 제어 (Sensorless Control of a Permanent Magnet Synchronous Motor based on an Instantaneous Reactive Power in the Field-Weakening Region)

  • 이정흠;김영석;최양광
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제54권2호
    • /
    • pp.71-80
    • /
    • 2005
  • This paper presents the position sensorless vector control of a cylindrical permanent magnet synchronous motor(PMSM) in the field weakening region. The position sensorless algorithm using an instantaneous reactive power of the PMSM is proposed. An instantaneous reactive power can be obtained from the vector product of rotor currents and back emf of the PMSM. Back emf includes the information of rotor speed. So the estimated speed can be yielded from the voltage equation of the PMSM. In other words, the estimated speed is compensated by using an instantaneous reactive power. To extend the speed range of the PMSM in the constant horsepower region, the field weakening control is applied. The proposed algorithm is not affected by mechanical motor parameters because the mechanical equation is not used. The effectiveness of the proposed algorithm is verified by the experimental results.

유도전동기 센서리스 벡터제어를 위한 고피나스 자속관측기의 P/PI 모드 전환 (The P/PI Mode Switching Method of Gopinath Flux Observer for Sensorless Vector Control of Induction Motors)

  • 강명규;최종우
    • 전기학회논문지
    • /
    • 제66권12호
    • /
    • pp.1732-1739
    • /
    • 2017
  • This paper presents a sensorless vector control algorithm of closed loop Gopinath flux observer to enhance the robustness at low speed by switching P/PI mode. Closed loop Gopinath flux observer has the problem in sensorless vector control of induction motor at low speed. This paper solves the problem using the characteristic function of closed loop Gopinath flux observer. P mode shows better performance than PI mode under the cut-off frequency of observer. But P mode always has a flux error due to DC offset, so this paper combines P mode and PI mode. This algorithm shows good performance over wide speed range. The performance has been confirmed through computer simulations using MATLAB SIMULINK and experiments.