• Title/Summary/Keyword: sensor rotating

Search Result 251, Processing Time 0.025 seconds

A Study on the Noise Emission Characteristics of Turbo Axial Flow Fan by Experimental Method (터보형송풍기의 소음 방사특성에 관한 실험적 연구)

  • 김동규;백종진
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.271-277
    • /
    • 2003
  • Recently as the environmental noise getting influential social problem, it is the fact that the demand on noise reduction increases with the advance of the standard of living. Therefore increasing the interest on the noise in common, it is eagerly demanded that the endeavour for reducing the noise of the rotating machinery, especially the machinery related a flowing including the household electric products, which is pointed out the primary noise source in environment. As proceeding study for fan noise, theory of fan noise property is arranged and this control method is shown. Blade passage noise of total noise spectrum. Thus in the aspect of noise reduction, noise source and identification of noise radiation characteristics of axial flow fan are demanded in detail. The sound source is analyzed by using sound pressure and sound intensity. In that time, synchronization of axial flow fan using optical sensor is executed, and to identify the location of exact noise source in the fan profile determination of recording time is proposed. In the rotating of tan, it is explained that the location of noise source exists in and by the directivity, the noise radiation pattern of axial flow fan is determined and the flow of sound is visualized in the figure of contour mapping.

  • PDF

Measurement System of Photosynthetic Photon Flux Distribution and Illumination Efficiency of LED Lamps for Plant Growth

  • Lee, Jae Su;Kim, Yong Hyeon
    • Journal of Biosystems Engineering
    • /
    • v.37 no.5
    • /
    • pp.314-318
    • /
    • 2012
  • Purpose: This study was conducted to develop a measurement system for determining photosynthetic photon flux (PPF) distribution and illumination efficiency of LED lamps. Methods: The system was composed of a linear moving sensor part (LMSP), a rotating part to turn the LMSP, a body assembly to support the rotating part, and a motor controller. The average PPF of the LED lamp with natural cooling and water cooling was evaluated using the measurement system. Results: The PPF of LED lamp with water cooling was 3.1-31.7% greater than that with natural cooling. Based on the measured value, PPF on the horizontal surface was predicted. Illumination efficiency of the LED lamp was slightly increased with water cooling by 3.4%, compared with natural cooling. A simulation program using MATLAB was developed to analyze the effects of the vertical distance from lighting sources to growing bed, lamp spacing, and number of LED lamps, on the PPF distribution on the horizontal surface. The uniformity of the PPF distribution of the LED lamps was fairly improved with 15 cm spacing, as compared to the 5 cm spacing. By simulation, PPF of $217.0{\pm}27.9{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ was obtained at the vertical distance of 40 cm from six LED lamps with 12 cm spacing. This simulated PPF was compared to the measured one of $225.9{\pm}25.6{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. After continuous lighting of 346 days, the relative PPF of LED lamps with water cooling and natural cooling was decreased by 6.6% and 22.8%, respectively. Conclusions: From these results, it was concluded that the measurement system developed in this study was useful for determining PPF and illumination efficiency of artificial lighting sources including LED lamp.

Adhesive bonding using thick polymer film of SU-8 photoresist for wafer level package

  • Na, Kyoung-Hwan;Kim, Ill-Hwan;Lee, Eun-Sung;Kim, Hyeon-Cheol;Chun, Kuk-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.325-330
    • /
    • 2007
  • For the application to optic devices, wafer level package including spacer with particular thickness according to optical design could be required. In these cases, the uniformity of spacer thickness is important for bonding strength and optical performance. Packaging process has to be performed at low temperature in order to prevent damage to devices fabricated before packaging. And if photosensitive material is used as spacer layer, size and shape of pattern and thickness of spacer can be easily controlled. This paper presents polymer bonding using thick, uniform and patterned spacing layer of SU-8 2100 photoresist for wafer level package. SU-8, negative photoresist, can be coated uniformly by spin coater and it is cured at $95^{\circ}C$ and bonded well near the temperature. It can be bonded to silicon well, patterned with high aspect ratio and easy to form thick layer due to its high viscosity. It is also mechanically strong, chemically resistive and thermally stable. But adhesion of SU-8 to glass is poor, and in the case of forming thick layer, SU-8 layer leans from the perpendicular due to imbalance to gravity. To solve leaning problem, the wafer rotating system was introduced. Imbalance to gravity of thick layer was cancelled out through rotating wafer during curing time. And depositing additional layer of gold onto glass could improve adhesion strength of SU-8 to glass. Conclusively, we established the coating condition for forming patterned SU-8 layer with $400{\mu}m$ of thickness and 3.25 % of uniformity through single coating. Also we improved tensile strength from hundreds kPa to maximum 9.43 MPa through depositing gold layer onto glass substrate.

The Evaluation of a General Purpose Bale System Performance and Its Bale Quality

  • Chang, Dongil;Chung, Sun-Ok;Cho, Byoung-Kwan;Park, Dongseok;Sung, Namseok;Kim, Jungchul;Lee, Inhyun;Park, Jutaek
    • Journal of Biosystems Engineering
    • /
    • v.38 no.4
    • /
    • pp.223-227
    • /
    • 2013
  • Purpose: The objectives of this study were to develop a general purpose baler system that is appropriate for the domestic forage cultivation environment and operated by the medium size tractor for production of bale silage made of green forage crops, and to test its performance. Methods: In a first experiment, the time of formation per one bale and densities of bales that are produced from bale system, were measured. In a second experiment, power requirement was measured by a power measurement system manufactured during bale system work. Results: The power measurement system was constructed with strain-gage sensors to measure torque of a PTO axle and proximity sensor to measure rotating speed of a PTO axle. Thus, the power requirement was calculated by PTO torque and PTO rotating speed. For evaluation of bale quality, the samples of bales were analyzed for contents of moisture, ADF, NDF and TDN. Conclusions: If the results of this study will be utilized, the coefficient of utilization of agricultural machinery will be increased by the operation of a medium size tractor that is a major disseminated tractor in farm, and it will contribute tremendously to make a forage production base for livestock farms.

Development of the Power Monitoring System for the Planetary Geared Motor using Hall Effect Sensor (홀 이펙트 센서를 이용한 유성기어 감속기모터의 동력 모니터링 시스템 개발)

  • Jang, In-Hun;Sim, Kwee-Bo;Oh, Se-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.7
    • /
    • pp.914-919
    • /
    • 2004
  • When the motor is rotating, the torque and rpm are varying as the loads or the driving status connecting through reduction units are changing. On the contrary, one can monitor the changes of the loads or the driving status in the manner of measuring motor torque and rpm. There is a torque measuring method using the strain gauge and bridge circuit. But, because this is the contact method, it has the life time which is dependent on rotating velocity and used time. So this system demands on replacement of some Parts or whole system itself for maintenance. And this system is also relatively big and expensive, requiring preceding annoying process. In this paper, we are going to suppose non-contact method to measure torque and rpm using the Hall effects sensor For this we have made the planetary geared reduction motor with Hall sensors and with the monitoring system. The monitoring system displays the sensing data(torque, rpm) and calculated data( power) and also has the network capability with Bluetooth protocol. Our solution is much more inexpensive ;md simple method to measure torque and rpm than before.

Application of Eddy Current Sensor for Measurement of TBM Disc Cutter Wear (TBM 디스크커터의 마모량 측정을 위한 와전류센서의 적용 연구)

  • Min-Sung Park;Min-Seok Ju;Jung-Joo Kim;Hoyoung Jeong
    • Tunnel and Underground Space
    • /
    • v.33 no.6
    • /
    • pp.534-546
    • /
    • 2023
  • If the disc cutter is excessively worn or damaged, it becomes incapable of rotating and efficiently cutting rockmass. Therefore, it is important to appropriately manage the replacement cycle of the disc cutter based on its degree of wear. In general, the replacement cycle is determined based on the results of manual inspection. However, the manual measurements has issues related to worker safety and may lead to inaccurate measurement results. For these reasons, some foreign countries are developing the real-time measurement system of disc cutter wear by using different sensors. The ultrasonic sensors, eddy current sensors, magnetic sensors, and others are utilized for measuring the wear amount of disc cutters. In this study, the applicability of eddy current sensors for real-time measurement of wear amount in TBM disc cutters was evaluated. The distance measurement accuracy of the eddy current sensor was assessed through laboratory tests. In particular, the accuracy of eddy-current sensor was evaluated in various environmental conditions within the cutterhead chamber. In addition, the measurement accuracy of the eddy current sensor was validated using a 17-inch disc cutter.

A study on indoor navigation system using localization based on wireless communication (무선통신기반 위치인식을 이용한 실내 내비게이션 시스템에 관한 연구)

  • Kim, Jung-Ha;Lee, Sung-Geun;Kim, Jong-Su;Kim, Jeong-Woo;Seo, Dong-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.114-120
    • /
    • 2013
  • Recently, navigation systems based on wireless communication have been applied to the internal structures such as building or ship. If a stable azimuth information is obtained, these systems can effectively guide the direction of the user's progress through the information and then can improve the performance of guidance. Since conventional method which has acquired an azimuth information using geomagnetic and acceleration sensor(azimuth sensor hereafter) is sensitive to the effects of the magnetic field, it has unstable error range according to the surrounding environment. In order to improve these problems, this paper presents a new relative azimuth estimation algorithm using the displacement of a mobile node and its rotation angle based on Wireless communication. For the performance assessment of the proposed algorithm, experiments using rotating arm are performed and the results are confirmed that the proposed system can estimate the relative azimuth without using additional sensors.

AUTOMATIC MULTITORCH WELDING SYSTEM WITH HIGH SPEED

  • Moon, H.S;Kim, J.S.;Jung, M.Y.;Kweon, H.J.;Kim, H.S.;Youn, J.G.
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.320-323
    • /
    • 2002
  • This paper presents a new generation of system for pressure vessel and shipbuilding. Typical pressure vessel and ship building weld joint preparations are either traditional V, butt, fillet grooves or have narrow or semi narrow gap profiles. The fillet and U groove are prevalently used in heavy industries and shipbuilding to melt and join the parts. Since the wall thickness can be up to 6" or greater, welds must be made in many layers, each layer containing several passes. However, the welding time for the conventional processes such as SAW(Submerged Arc Welding) and FCAW(Flux Cored Arc Welding) can be many hours. Although SAW and FCAW are normally a mechanized process, pressure vessel and ship structures welding up to now have usually been controlled by a full time operator. The operator has typically been responsible for positioning each individual weld run, for setting weld process parameters, for maintaining flux and wire levels, for removing slag and so on. The aim of the system is to develop a high speed welding system with multitorch for increasing the production speed on the line and to remove the need for the operator so that the system can run automatically for the complete multi-torch multi-layer weld. To achieve this, a laser vision sensor, a rotating torch and an image processing algorithm have been made. Also, the multitorch welding system can be applicable for the fine grained steel because of the high welding speed and lower heat input compare to a conventional welding process.

  • PDF

A Convergency Study on the Gas Turbine Rotation Axis Temperature Sensor for Power Plants (발전소용 가스터빈 회전축 온도 센서 융합연구)

  • Lee, Jeongl-Ick;Na, Gi-Soo
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.12
    • /
    • pp.293-298
    • /
    • 2019
  • The global market for temperature sensors for power plants is estimated at around 35 billion won, of which South Korea relies on imported products for more than 95 percent. This study is that a temperature measurement device for gas turbine rotators for power plants and can be applied to more than 800 of 100 MW gas turbine generators operating in Korea. This study has improved durability by changing the shape of the measuring part, structure of the connecting part, and material changes, and is a component technology applicable to other measuring devices such as humidity, gas and hydraulic pressure used in precision chemical process and plant export industry. As a result of this study, temperature sensors designed as three types of sensors for measuring the temperature of the gas turbine for power plants met Class 1 temperature accuracy in the range of 0℃ to 300℃, and improved durability significantly compared to similar products.

Development of an intuitive motion-based drone controller (직관적 제어가 가능한 드론과 컨트롤러 개발)

  • Seok, Jung-Hwan;Han, Jung-Hee;Baek, Jun-Hyuk;Chang, Won-Joo;Kim, Huhn
    • Design & Manufacturing
    • /
    • v.11 no.3
    • /
    • pp.41-45
    • /
    • 2017
  • Drones can be manipulated in a variety of ways. One of the most common controller is joystick method. But joystick controller uses both hands and takes a long time to learn. Particularly, in the case of 8-character flight, it is necessary to use both front and rear flight (pitch), left and right flight (Roll), and body rotation (Yaw). Joystick controller has limitations to intuitively control it. In particular, when the main body rotates, the viewpoint of the forward direction is changed between the drones and the user, thereby causing a mental rotation problem in which the user must control the rotating state of the drones. Therefore, we developed a motion matching controller that matches the motion of the drones and the controller. That is, the movement of the drone and the movement of the controller are the same. In this study, we used a gyro sensor and an acceleration sensor to map the controller's forward / backward, left / right and body rotation movements to drone's forward / backward, left / right, and rotational flight motion. The motor output is controlled by the throttle dial at the center of the controller. As the motions coincide with each other, it is expected that the first drone operator will be able to control more intuitively than the joystick manipulator with less learning.