International journal of advanced smart convergence
/
제6권3호
/
pp.29-37
/
2017
The current behavior recognition system don't match data formats between sensor data measured by user's sensor module or device. Therefore, it is necessary to support data processing, sharing and collaboration services between users and behavior recognition system in order to process sensor data of a large capacity, which is another formats. It is also necessary for real time interaction with users and behavior recognition system. To solve this problem, we propose fog cloud based behavior recognition system for human body sensor data processing. Fog cloud based behavior recognition system solve data standard formats in DbaaS (Database as a System) cloud by servicing fog cloud to solve heterogeneity of sensor data measured in user's sensor module or device. In addition, by placing fog cloud between users and cloud, proximity between users and servers is increased, allowing for real time interaction. Based on this, we propose behavior recognition system for user's behavior recognition and service to observers in collaborative environment. Based on the proposed system, it solves the problem of servers overload due to large sensor data and the inability of real time interaction due to non-proximity between users and servers. This shows the process of delivering behavior recognition services that are consistent and capable of real time interaction.
Human activity recognition has been studied using various sensors and algorithms. Human activity recognition can be divided into sensor based and vision based on the method. In this paper, we proposed an activity recognition system using acceleration sensor and gyroscope sensor in smartphone among sensor based methods. We used Deep Belief Network (DBN), which is one of the most popular deep learning methods, to improve an accuracy of human activity recognition. DBN uses the entire input set as a common input. However, because of the characteristics of different time window depending on the type of human activity, the RBMs, which is a component of DBN, are configured hierarchically by combining them from different time windows. As a result of applying to real data, The proposed human activity recognition system showed stable precision.
With the explosion of digital devices, interaction technologies between human and devices are required more than ever. Especially, hand gesture recognition is advantageous in that it can be easily used. It is divided into the two groups: the contact sensor and the non-contact sensor. Compared with non-contact gesture recognition, the advantage of contact gesture recognition is that it is able to classify gestures that disappear from the sensor's sight. Also, since there is direct contacted with the user, relatively accurate information can be acquired. Electromyography (EMG) and force-sensitive resistors (FSRs) are the typical methods used for contact gesture recognition based on muscle activities. The sensors, however, are generally too sensitive to environmental disturbances such as electrical noises, electromagnetic signals and so on. In this paper, we propose a novel contact gesture recognition method based on Flexible Epidermal Tactile Sensor Array (FETSA) that is used to measure electrical signals according to movements of the wrist. To recognize gestures using FETSA, we extracted feature sets, and the gestures were subsequently classified using the support vector machine. The performance of the proposed gesture recognition method is very promising in comparison with two previous non-contact and contact gesture recognition studies.
A smartphone has very limited input methods regardless of its various functions. In this respect, it is one alternative that sensor motion recognition can make intuitive and various user interface. In this paper, we recognize user's motion using acceleration sensor, magnetic field sensor, and gyro sensor in smartphone. We try to reduce sensing error by gradient descent algorithm because in single sensor it is hard to obtain correct data. And we apply vector quantization by conversion of rotation displacement to spherical coordinate system for elevated recognition rate and recognition of small motion. After vector quantization process, we recognize motion using HMM(Hidden Markov Model).
This paper presents a hybrid model solution for user motion recognition. The use of a single classifier in motion recognition models does not guarantee a high recognition rate. To enhance the motion recognition rate, a hybrid model consisting of decision trees and artificial neural networks is proposed. We define six user motions commonly performed in an indoor environment. To demonstrate the performance of the proposed model, we conduct a real field test with ten subjects (five males and five females). Experimental results show that the proposed model provides a more accurate recognition rate compared to that of other single classifiers.
본 논문에서는 사람의 행동 모니터링을 위한 멀티 센서 기반의 웨어러블 지능형 디바이스를 제안한다. 다중 행동을 인식하기 위해, 이미지 센서와 가속도 센서를 이용하여 행동 인식 알고리즘을 개발하였다. 멀티 센서로부터 얻은 데이터를 분석하기 위해 그리드 기반 옵티컬 플로우 방법을 제안하고 SVM 분류기법을 이용하였다. 이미지 센서로부터 얻은 모션 벡터의 방향과 크기를 이용하였고, 3축 가속도 센서로부터 얻은 데이터에서 FFT의 축과 크기와의 상관관계를 계산하였다. 실험 결과에서 이미지 센서 기반과 3축 가속도 센서기반의 행동 인식률은 각각 55.57 %, 89.97%를 보였으나 제안한 멀티센서기반의 행동인식률은 92.78% 를 보였다.
Kim, Ji-Kyoung;Oh, Yeong-Jae;Chong, Kab-Sung;Wee, Jae-Woo;Lee, Chong-Ho
대한전기학회:학술대회논문집
/
대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
/
pp.107-109
/
2004
In this paper, authors propose the sensor fusion system that can recognize multiple 3D objects from 2D projection images and tactile information. The proposed system focuses on improving recognition performance of 3D object. Unlike the conventional object recognition system that uses image sensor alone, the proposed method uses tactual sensors in addition to visual sensor. Neural network is used to fuse these informations. Tactual signals are obtained from the reaction force by the pressure sensors at the fingertips when unknown objects are grasped by four-fingered robot hand. The experiment evaluates the recognition rate and the number of teaming iterations of various objects. The merits of the proposed systems are not only the high performance of the learning ability but also the reliability of the system with tactual information for recognizing various objects even though visual information has a defect. The experimental results show that the proposed system can improve recognition rate and reduce learning time. These results verify the effectiveness of the proposed sensor fusion system as recognition scheme of 3D object.
Human being recognizes the physical world by integrating a great variety of sensory inputs, the information acquired by their own action, and their knowledge of the world using hierarchically parallel-distributed mechanism. In this paper, authors propose the sensor fusion system that can recognize multiple 3D objects from 2D projection images and tactile informations. The proposed system focuses on improving recognition performance of 3D objects. Unlike the conventional object recognition system that uses image sensor alone, the proposed method uses tactual sensors in addition to visual sensor. Neural network is used to fuse the two sensory signals. Tactual signals are obtained from the reaction force of the pressure sensors at the fingertips when unknown objects are grasped by four-fingered robot hand. The experiment evaluates the recognition rate and the number of learning iterations of various objects. The merits of the proposed systems are not only the high performance of the learning ability but also the reliability of the system with tactual information for recognizing various objects even though the visual sensory signals get defects. The experimental results show that the proposed system can improve recognition rate and reduce teeming time. These results verify the effectiveness of the proposed sensor fusion system as recognition scheme for 3D objects.
각종 센서 기술의 발달로 일반 사용자들이 스마트폰, 콘솔게임기(닌텐도 Wii)와 같은 동작인식 장치를 접해 볼 수 있는 환경이 증가하면서 동작인식 기반 입력장치에 대한 사용자 니즈가 증가하는 추세이다. 기존 동작인식 마우스는 외부에 마우스 버튼이 변형 된 형태로 장착되어 마우스 좌,우 버튼과 휠 역할을 하며, 내부에는 가속도센서(또는 자이로센서 포함)를 장착하여 마우스 커서 역할을 담당하고 있고, 소형으로 제작이 되어 버튼을 조작하는데 어려움이 있으며, 동작인식 기술을 커서의 포인팅에만 사용되어 동작인식 기술을 적용에는 한계가 있다. 이에 본 논문에서는 MEMS 기반 모션 레코그니션 센서(Motion Recognition Sensor)를 이용, 인체의 2지점(엄지와 검지)의 동작을 인식하여 동작데이터를 생성하고 이를 기초로 하여 사전 결정된 매칭테이블(커서이동 및 마우스 버튼 이벤트)과 비교, 판단하여 제어신호를 생성하고, 생성된 제어신호를 무선 송신하는 컴퓨터 입력장치에 관해 연구하였다.
Motion recognition is very useful for implementing an intuitive HMI (Human-Machine Interface). In particular, hands are the body parts that can move most precisely with relatively small portion of energy. Thus hand motion has been used as an efficient communication interface with other persons or machines. In this paper, we design and implement a light-weight ANN (Artificial Neural Network)-based hand motion recognition using a state-of-the-art flex sensor. The proposed design consists of data collection from a wearable flex sensor, preprocessing filters, and a light-weight NN (Neural Network) classifier. For verifying the performance and functionality of the proposed design, we implement it on a low-end embedded device. Finally, our experiments and prototype implementation demonstrate that the accuracy of the proposed hand motion recognition achieves up to 98.7%.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.