• Title/Summary/Keyword: sensor nonlinearity

Search Result 99, Processing Time 0.024 seconds

Development of Automatic Tension Control and Fixing Device for An Automatic Manufacturing Process of A Vibrating Wire Sensor (진동현 센서 제작 공정 자동화를 위한 자동 장력 조절 및 접합 장치의 개발)

  • Go, Seok-Jo;Park, Jang-Sik;Yu, Ki-Ho;Kim, Seong-Won;Lee, Seung-Hoon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.17 no.2
    • /
    • pp.61-68
    • /
    • 2014
  • Constructing structures is the basic process requiring establishment of grounds. However, cracks due to sinking and distorting ground influence directly on the safety of structural health. Vibrating wire sensor measures the crack of structure by detecting the differences of wire tensions in analogue manner. In the previous production process, the tension is adjusted manually measuring the frequency of vibrating wire. Therefore, the accuracy of a sensor was depends on the skill level of labor. In this study, the automatic tension control and fixing devise is developed to enhance both accuracy and productivity. To evaluate the performance of the vibrating wire sensor, the nonlinearity of sensor is measured. The automatic tension control and fixing devise enhances the nonlinearity of the sensor from 0.398 to 0.056%. Therefore, the accuracy of the newly proposed method is successful.

Nonlinearity compensation for laser interferometer using adaptive algorithm (적응형 알고리즘에 의한 레이저 간섭계의 비선형성 오차 보정)

  • Lee, Woo-Ram;Hong, Min-Suk;Choi, In-Sung;You, Kwan-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.234-236
    • /
    • 2006
  • Because of its long measurement range and ultra-precise resolution. the heterodyne laser interferometer systems are very common in various industry area such as semiconductor manufacturing. However the periodical nonlinearity property caused from frequency mixing is an obstacle to improve the high measurement accuracy in nanometer scale. In this paper to minimize the effect of nonlinearity, we propose an adaptive nonlinearity compensation algorithm. We first compute compensation parameters using least square (LS) with the capacitance displacement sensor as a reference input. We then update the parameters with recursive LS (RLS) while the values are optimized to modify the elliptical phase into circular one. Through comparison with some experimental results of laser system, we demonstrate the effectiveness of our proposed algorithm.

  • PDF

Output Feedback Control of a Class of Nonlinear Systems with Sensor Noise Via Matrix Inequality Approach (행렬 부등식 접근법을 이용한 센서 노이즈 비선형 시스템의 출력궤환 제어)

  • Koo, Min-Sung;Choi, Ho-Lim
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.8
    • /
    • pp.748-752
    • /
    • 2015
  • We present an output feedback controller for a class of nonlinear systems with uncertain nonlinearity and sensor noise. The sensor noise has both a finite constant component and a time-varying component such that its integral function is finite. The new design and analysis method is based on the matrix inequality approach. With our proposed controller, the states and output can be ultimately bounded even though the structure of nonlinearity is more general than that in the existing results.

Fabrication of Relative-type Capacitive Pressure Sensor (상대압 용량성 압력센서의 제작)

  • 서희돈;임근배;최세곤
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.7
    • /
    • pp.82-88
    • /
    • 1993
  • This paper describes fabrication of relative type capacitive pressure sensor to be in great demand for many fields. The fabricated sensor consists of two parts` a sensing diaphragm and a pyrox glass cover. The sensor size is 4.5${\times}3.4mm$^{2})$ and 400$\mu$m thick. To improve the nonlinearity, this sensor is designed a rectangular silicon diaphragm with a center boss structure, and in order to improve the temperature characteristics of the sensor in a packaging process, the sensing element is mounted on the pyrex glass support. Some suggestions toward the design and fabrication of improved sensors have been presented. The zero pressure capacitance, Co of sensor is 26.57pF, and the change of capacitance, ${\Delta}$C is 1.55pF from 0Kgf/Cm$^{2}$ to 1Kgf/Cm$^{2}$ at room temperature. The nonlinearity of the sensor output with center boss diaphragm is 1.29%F.S., and thermal zero shift and thermal sensitivity shift is less than 1.43%F.S./$^{\circ}C$and 0.14% F.S./$^{\circ}C$, respectively.

  • PDF

Learning the nonlinearity of a camera calibration model using GMDH algorithm (GMDH 알고리즘에 의한 카메라 보정 모델의 비선형성 학습)

  • Kim, Myoung-Hwan;Do, Yong-Tae
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.109-115
    • /
    • 2005
  • Calibration is a prerequisite procedure for employing a camera as a 3D sensor in an automated machines like robots. As accurate sensing is possible only when the vision sensor is calibrated accurately, many different approaches and models have been proposed for increasing calibration accuracy. Particularly an important factor which greatly affects the calibration accuracy is the nonlinearity in the mapping between 3D world and corresponding 2D image. In this paper GMDH algorithm is used to learn the nonlinearity without physical modelling. The technique proposed can be effective in various situations where the levels of noises and characteristics of nonlinear distortion are different. In simulations and an experiment, the proposed technique showed good and reliable results.

Accuracy improvement of laser interferometer with neural network (신경회로망을 이용한 레이저 간섭계 정밀도 향상)

  • Lee, Woo-Ram;Heo, Gun-Hang;Hong, Min-Suk;Choi, In-Sung;You, Kwan-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.597-599
    • /
    • 2006
  • In this paper, we propose an artificial intelligence method to compensate the nonlinearity error which occurs in the heterodyne laser interferometer. Some superior properties such as long measurement range, ultra-precise resolution and various system set-up lead the laser interferometer to be a practical displacement measurement apparatus in various industry and research area. In ultra-precise measurement such as nanometer or subnanometer scale, however, the accuracy is limited by the nonlinearity error caused by the optical parts. The feedforward neural network trained by back-propagation with a capacitive sensor as a reference signal minimizes the nonlinearity error and we demonstrate the effectiveness of our proppsed algorithm through some experimental results.

  • PDF

Adaptive Nonlinearity Compensation in Laser Interferometer using Neural Network (신경망 회로를 이용한 레이저 간섭계의 적응형 오차보정)

  • Heo, Gun-Hang;Lee, Woo-Ram;You, Kwan-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.86-88
    • /
    • 2007
  • In the semiconductor manufacturing industry, the heterodyne laser interferometer plays as an ultra-precise measurement system. However, the heterodyne laser interferometer has some unwanted nonlinearity error which is caused from frequency-mixing. This is an obstacle to improve the measurement accuracy in nanometer scale. In this paper we propose a compensation algorithm based on RLS(recursive least square) method and artificial intelligence method, which reduce the nonlinearity error in the heterodyne laser interferometer. With the capacitance displacement sensor we get a reference signal which can be transformed into the intensity domain. Using the back-propagation Neural Network method, we train the network to track the reference signal. Through some experiments, we demonstrate the effectiveness of the proposed algorithm in measurement accuracy.

  • PDF

Measurement Feedback Control of a Class of Nonlinear Systems via Matrix Inequality Approach (행렬 부등식 접근법을 이용한 비선형 시스템의 측정 피드백 제어)

  • Koo, Min-Sung;Choi, Ho-Lim
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.6
    • /
    • pp.631-634
    • /
    • 2014
  • We propose a measurement state feedback controller for a class of nonlinear systems that have uncertain nonlinearity and sensor noise. The new design method based on the matrix inequality approach solves the measurement feedback control problem of a class of nonlinear systems. As a result, the proposed methods using a matrix inequality approach has the flexibility to apply the controller. In addition, the sensor noise can be attenuated for more generalized systems containing uncertain nonlinearities.

Analog Front-End IC for Automotive Battery Sensor (차량 배터리 센서용 Analog Front-End IC 설계)

  • Yeo, Jae-Jin;Jeong, Bong-Yong;Roh, Jeong-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.10
    • /
    • pp.6-14
    • /
    • 2011
  • This paper presents the design of the battery sensor IC for instrumentation of current, voltage using delta-sigma ADC. The proposed circuit consists of programmable gain instrumentation amplifier (PGIA) and second-order discrete-time delta-sigma modulator with 1-bit quantization were fabricated by a 0.25 ${\mu}m$ CMOS technology. Design circuit show that the modulator achieves 82 dB signal-to-noise ratio (SNR) over a 2 kHz signal bandwidth with an oversampling ratio (OSR) of 256 and differential nonlinearity (DNL) of ${\pm}$ 0.3 LSB, integral nonlinearity (INL) of ${\pm}$ 0.5 LSB. Power consumption is 4.5 mW.

Development of Gripping Force Sensor for a Spindle Tool of BT50 (BT50용 스핀들 공구 파지력 검사를 위한 힘센서 개발)

  • Lee, Dae-Geon;Kim, Gab-Soon
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.42-46
    • /
    • 2021
  • In this paper, we describe the development of a force sensor to measure the tool gripping force of the BT50 spindle. The force sensor for a BT50 must be installed inside the gripping force tester; hence, it must be of an appropriate size and have a rated capacity suitable for measuring the gripping force. So, the structure of the force sensor for BT50 was modeled, the size of the sensing part was determined by structural analysis, and the force sensor was manufactured by attaching a strain gauge. The characteristic test results of the manufactured force sensor, indicated that the nonlinearity error, hysteresis error, and reproducibility errors were each within 0.91%, Therefore it was determined that the manufactured force sensor can be used for checking the spindle tool gripping force.