• Title/Summary/Keyword: sensor model design

Search Result 548, Processing Time 0.04 seconds

Development of the Neural Network Steering Controller based on Magneto-Resistive Sensor of Intelligent Autonomous Electric Vehicle (자기저항 센서를 이용한 지능형 자율주행 전기자동차의 신경회로망 조향 제어기 개발)

  • 김태곤;손석준;유영재;김의선;임영철;이주상
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.196-196
    • /
    • 2000
  • This paper describes a lateral guidance system of an autonomous vehicle, using a neural network model of magneto-resistive sensor and magnetic fields. The model equation was compared with experimental sensing data. We found that the experimental result has a negligible difference from the modeling equation result. We verified that the modeling equation can be used in simulations. As the neural network controller acquires magnetic field values(B$\_$x/, B$\_$y/, B$\_$z/) from the three-axis, the controller outputs a steering angle. The controller uses the back-propagation algorithms of neural network. The learning pattern acquisition was obtained using computer simulation, which is more exact than human driving. The simulation program was developed in order to verify the acquisition of the teaming pattern, teaming itself, and the adequacy of the design controller. The performance of the controller can be verified through simulation. The real autonomous electric vehicle using neural network controller verified good results.

  • PDF

A Study on the Photo-realistic 3D City Modeling Using the Omnidirectional Image and Digital Maps (전 방향 이미지와 디지털 맵을 활용한 3차원 실사 도시모델 생성 기법 연구)

  • Kim, Hyungki;Kang, Yuna;Han, Soonhung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.3
    • /
    • pp.253-262
    • /
    • 2014
  • 3D city model, which consisted of the 3D building models and their geospatial position and orientation, is becoming a valuable resource in virtual reality, navigation systems, civil engineering, etc. The purpose of this research is to propose the new framework to generate the 3D city model that satisfies visual and physical requirements in ground oriented simulation system. At the same time, the framework should meet the demand of the automatic creation and cost-effectiveness, which facilitates the usability of the proposed approach. To do that, I suggest the framework that leverages the mobile mapping system which automatically gathers high resolution images and supplement sensor information like position and direction of the image. And to resolve the problem from the sensor noise and a large number of the occlusions, the fusion of digital map data will be used. This paper describes the overall framework with major process and the recommended or demanded techniques for each processing step.

Design of a Bimorph Piezoelectric Energy Harvester for Railway Monitoring

  • Li, Jingcheng;Jang, Shinae;Tang, Jiong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.6
    • /
    • pp.661-668
    • /
    • 2012
  • Wireless sensor network is one of prospective methods for railway monitoring due to the long-term operation and low-maintenance performances. How to supply power to the wireless sensor nodes has drawn much attention recently. In railway monitoring, the idea of converting ambient vibration energy from vibration of railway track induced by passing trains to electric energy has made it a potential way for powering the wireless sensor nodes. In this paper, a bimorph cantilever piezoelectric energy harvester was designed based on a single degree-of-freedom model. Experimental test was also performed to validate the design. The first natural frequency of the bimorph piezoelectric energy harvester was decreased from 117.1 Hz to 65.2 Hz by adding 4 gram tip mass to the free end of the 8.6 gram energy harvester. In addition, the power generation of the piezoelectric energy harvester with 4 gram tip mass at resonant frequency was increased from 0.14 mW to 0.74 mW from $2.06m/s^2$ base excitation compared to stand-alone piezoelectric energy harvester without tip mass.

Structural Design and Analysis for 3D Ultrasonic Anemometer

  • Kim, Kyung-Won;Choi, Jae-Yeong;Lee, Woo-Jin;Lee, Seon-Gil
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.86-90
    • /
    • 2016
  • A 3D ultrasonic anemometer measures the direction and velocity of wind in a 3D space. The 2D ultrasonic anemometers developed by different manufacturers do not differ significantly in terms of their form or structure. The 3D ultrasonic anemometers, on the other hand, have more diverse forms than their 2D counterparts depending on the measurement algorithms and methods. Designing and reviewing the structure at the initial stage and defining its performance objectives are time-consuming processes. The process can be made cost-effective and time-saving if the validity is tested by model design and structural interpretation, and the structure is designed to withstand high wind velocities. This study presents the results of a 3D ultrasonic anemometer on real sample data by using a 3D modeling program, CATIA, for ultrasonic anemometer modeling.

A Study on the Configuration of BOP and Implementation of BMS Function for VRFB (VRFB를 위한 BOP 구성 및 BMS 기능구현에 관한 연구)

  • Choi, Jung-Sik;Oh, Seung-Yeol;Chung, Dong-Hwa;Park, Byung-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.12
    • /
    • pp.74-83
    • /
    • 2014
  • This paper proposes a study on the configuration of balancing of plant(BOP) and implementation of battery management system(BMS) functions for vanadium redox flow battery(VRFB) and propose a method consists of sensor and required design specifications BOP system configuration. And it proposes an method of the functions implementation and control algorithm of the BMS for flow battery. Functions of BMS include temperature control, the charge and discharge control, flow control, level control, state of charge(SOC) estimation and a battery protection through the sensor signal of BOP. Functions of BMS is implemented by the sensor signal, so it is recognized as a very important factor measurement accuracy of the data. Therefore, measuring a mechanical signal(flow rate, temperature, level) through the BOP test model, and the measuring an electrical signal(cell voltage, stack voltage and stack current) through the VRFB charge-discharge system and analyzes the precision of data in this paper. Also it shows a good charge-discharge test results by the SOC estimation algorithm of VRFB. Proposed BOP configuration and BMS functions implementation can be used as a reference indicator for VRFB system design.

A Robust Method of Fault Diagnosis for Steer-by-Wire System's Sensor (Steer-by-Wire 시스템의 감지기에 대한 강인한 이상진단기법)

  • Moon S.W.;Ji Y.K.;Huh K.S.;Cho D.I.;Park J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1463-1467
    • /
    • 2005
  • This paper proposes an analytical redundancy technique for fault diagnostics of the sensor in steer-by-wire system. We use incorporating vehicle dynamics modeling into the design of a diagnostic system for steer-by-wire system. The use of a model of vehicle dynamics improves the speed and accuracy of the diagnoses. The proposed fault diagnostics algorithm is based on parity-space methods to generate residuals. To reduce the effects of modeling uncertainty and dynamic transients, the residuals are subject to filtering. We construct diagnostic system consisting residual threshold for detection and isolator with using the directional residual vector.

  • PDF

Sensor Redundancy Management using Kalman Filter for a Duplex Filght Control System (칼만필터를 이용한 2중 비행제어시스템의 센서 다중화 관리)

  • Lee, Seung-Hyun;Lee, Jang-Ho;Kim, Eung-Tae;Sung, Ki-Jung
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.4
    • /
    • pp.9-15
    • /
    • 2010
  • This paper presents a duplex flight control system of design concepts and sensor fault detection algorithm using Kalman Filter. The algorithm was verified to use HILS that is composed of two FCCs, motion table, visualization system, cockpit, and flight model computer. The FCC was developed to be able to mount on small aircraft.

Giant Magnetoimpedance in C067Fe4Mo1.5Si16.5B11 Metallic Glass Ribbon

  • Kuzminski, M.;Nesteruk, K.;Lachowicz, H.K.;Krzyzewski, A.;Yu, Seong-Cho;Lee, Hee-Bok;Kim, Cheol-Gi
    • Journal of Magnetics
    • /
    • v.9 no.2
    • /
    • pp.47-51
    • /
    • 2004
  • Giant magneto-impedance (GMI) effect in zero-magnetostrictive Co-based amorphous ribbons samples in their as-quenched and stress-released states as well as with intentionally induced magnetic anisotropy were investigated. Magnetic and impedance properties of the samples exhibiting different anisotropy were compared and the optimum operation conditions for the studied samples from the view-point of their utilization as a sensor element have been determined. A design of a model of magnetic field sensor and characteristics of the constructed prototype are presented.

Temperature Effect on Impedance-based Damage Monitoring of Steel-Bolt Connection using Wireless Impedance Sensor Node (무선 임피던스 센서노드를 이용한 강-볼트 접합부의 임피던스기반 손상모니터링에 미치는 온도 영향)

  • Hong, Dong-Soo;Kim, Jeong-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.27-33
    • /
    • 2012
  • This paper presents the effect of temperature on the impedance-based damage monitoring of steel-bolt connections using wireless impedance sensor nodes. In order to achieve the objective, the following approaches are implemented. First, a temperature-compensated damage monitoring scheme that includes a temperature compensation model and damage detection method is described. The temperature compensation model is designed by analyzing the linear regressions between the temperatures and impedance signatures. The correlation coefficient of the impedance signatures is selected as the damage index to monitor the damage occurrence in the target structures. Second, a wireless impedance sensor node is described for the design of the hardware components and embedded software. Finally, the performance of the temperature-compensated impedance-based damage monitoring scheme is evaluated for detecting a loose bolt in the steel-bolt connections on a lab-scale steel girder under various temperatures.

Characteristics of Radiated Electromagnetic Waves in Model GIS with Electrical Trouble and Design of Insulted Diagnosis UHF Sensor (모의 GIS의 전기적 이상에 따른 방사전자파의 특성과 절연진단용 UHF 센서 설계)

  • Park, Kwang-Seo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.5
    • /
    • pp.47-52
    • /
    • 2008
  • In this paper partial discharge were simulated by conducted particle, a fine protrusion, surface discharge, which could be easy accumulated charge and concentrated electric field in the model GIS. In this times this paper measured and analyzed the radiated electromagnetic waves by using spectrum analyzer and antenna ($30{\sim}2,000[MHz]$ for measurement of EMI EMC in accordance with occurrence and propagation of partial discharge. In the basis of this results, a novel UHF(Ultra High Frequency) spherical sensor is presented. The measured impedance bandwidth of the proposed antenna is from 0.3[GHz] to 1.7[GHz]. Form results of this study, this antenna will be playing an important role for the sensor for insulation diagnosis system by UHF method of real site GIS and power equipment using $SF_6$ gas.