Abstract
A 3D ultrasonic anemometer measures the direction and velocity of wind in a 3D space. The 2D ultrasonic anemometers developed by different manufacturers do not differ significantly in terms of their form or structure. The 3D ultrasonic anemometers, on the other hand, have more diverse forms than their 2D counterparts depending on the measurement algorithms and methods. Designing and reviewing the structure at the initial stage and defining its performance objectives are time-consuming processes. The process can be made cost-effective and time-saving if the validity is tested by model design and structural interpretation, and the structure is designed to withstand high wind velocities. This study presents the results of a 3D ultrasonic anemometer on real sample data by using a 3D modeling program, CATIA, for ultrasonic anemometer modeling.