• Title/Summary/Keyword: sensor data visualization

Search Result 86, Processing Time 0.024 seconds

VRSMS: VR-based Sensor Management System (VRSMS: 가상현실 기반 센서 관리 시스템)

  • Kim, Han-Soo;Kim, Hyung-Seok
    • Journal of the HCI Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.1-8
    • /
    • 2008
  • We introduce VRSMS(VR-based sensor management system) which is the visualization system of micro-scale air quality monitoring system Airscope[3]. By adopting VR-based visualization method, casual users can get insight of air quality data intuitively. Users can also manipulate sensors in VR space to get specific data they needed. For adaptive visualization, we separated visualization and interaction methods from air quality data. By separation, we can get consistent way for data access so new visualization and interaction methods are easily attached. As one of the adaptive visualization method, we constructed large display system which consists of several small displays. This system can provide accessibility for air quality data to people one public space.

  • PDF

A Study of Visualization Scheme of Sensing Data Based Location on Maps (지도에서 위치 기반의 센싱 데이터 가시화 방안 연구)

  • Choi, Ik-Jun;Kim, Yong-Woo;Lee, Chang-Young;Kim, Do-Hyeun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.5
    • /
    • pp.57-63
    • /
    • 2008
  • Recently, OGC(Open Geospatial Consortium) take the lead in SWE(Sensor Web Enablement) research that collection various context information from sensor networks and show it on map by web. OGC SWE WG(Working Group) defines a standard encoding about realtime spatiotemporal appear geographical feature, sensing data and support web services. This paper proposes a visualization scheme of sensing data based location on 2D maps. We show realtime sensing data on moving node that mapping GPS data on map. First, we present an algorithm and procedure that location information change to position of maps for visualization sensing data based on 2D maps. For verifying that algorithm and scheme, we design and implement a program that collecting GPS data and sensing data, and displaying application on 2D maps. Therefore we confirm effective visualization on maps based on web which realtime image and sensing data collected from sensor network.

  • PDF

Real-Time Visualization Techniques for Sensor Array Patterns Using PCA and Sammon Mapping Analysis (PCA와 Sammon Mapping 분석을 통한 센서 어레이 패턴들의 실시간 가시화 방법)

  • Byun, Hyung-Gi;Choi, Jang-Sik
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.99-104
    • /
    • 2014
  • Sensor arrays based on chemical sensors produce multidimensional patterns of data that may be used discriminate between different chemicals. For the human observer, visualization of multidimensional data is difficult, since the eye and brain process visual information in two or three dimensions. To devise a simple means of data inspection from the response of sensor arrays, PCA (Principal Component Analysis) or Sammon's nonlinear mapping technique can be applied. The PCA, which is a well-known statistical method and widely used in data analysis, has disadvantages including data distortion and the axes for plotting the dimensionally reduced data have no physical meaning in terms of how different one cluster is from another. In this paper, we have investigated two techniques and proposed a combination technique of PCA and nonlinear Sammom mapping for visualization of multidimensional patterns to two dimensions using data sets from odor sensing system. We conclude the combination technique has shown more advantages comparing with the PCA and Sammon nonlinear technique individually.

System Design for a Urban Energy Monitoring and Visualization Environment Using Ubiquitous Sensor Network and Social Sensor Networking (Ubiquitous Sensor Network 및 Social Sensor Networking을 이용한 도시 에너지 모니터링 가시화 시스템 설계)

  • Choe, Yoon;Jang, Myeong-Ho;Kim, Sung-Ah
    • Journal of the HCI Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.7-14
    • /
    • 2010
  • Urban Data collected through Sensor Network is becoming crucial to understand and analyse a city. Thus, the Ubiquitous Sensor Network builds the foundation of the u-City development. This research aims to develop an energy monitoring application with an intuitive visualization environment which integrates energy usage information on top of urban geospatial information. Such a system will be able to facilitate effective energy supply plan at the early stages of urban planning, and eventually to encourage citizens to conserve energy by giving them real time monitoring information in an easy to understand visual environment. The system provides multiple layers of energy-related information coupled with the geospatial information layer in order to accommodate multiple viewpoints. On the other hand, the system provides logical Level of Detail control based on urban spatial information hierarchy. We defined the system concept and functions, and designed the data structure and the methods of information visualization. This paper presents the visualization methods, data structure, interactions scenarios which combines spacial information, E-GIS data and the energy related sensor data. Furthermore this research tries to introduce the concept of Social Sensor Networking to enhance the monitoring quality.

  • PDF

Design and Implementation of Smart Gardening System Using Real-Time Visualization Algorithm Based on IoT (IoT 기반 실시간 시각화 알고리즘을 이용한 스마트가드닝 시스템 설계 및 구현)

  • Son, Soo-A;Park, Seok-Cheon
    • Journal of Internet Computing and Services
    • /
    • v.16 no.6
    • /
    • pp.31-37
    • /
    • 2015
  • Data generated from sensors are exploding with recent development of IoT. This paradigm shift requires various industry fields that demand instant actions to analyze the arising data on a real-time basis, along with the real-time visualization analysis. As the existing visualization systems, however, perform visualization after storing data, the response time of the server cannot guarantee the ms-level processing that is close to real-time. They also have a problem of destroying data that can be major resources as they do not possess the process resources. Therefore, a smart gardening system that applies a real-time visualization algorithm using IoT sensing data under a gardening environment was designed and implement in this study. The response time of the server was measured to evaluate the performance of the suggested system. As a result, the response speed of the suggested real-time visualization algorithm was guaranteeing the ms-level processing close to real-time.

An App Visualization design based on IoT Self-diagnosis Micro Control Unit for car accident prevention

  • Jeong, YiNa;Jeong, EunHee;Lee, ByungKwan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.1005-1018
    • /
    • 2017
  • This paper proposes an App Visualization (AppV) based on IoT Self-diagnosis Micro Control Unit (ISMCU) for accident prevention. It collects a current status of a vehicle through a sensor, visualizes it on a smart phone and prevents vehicles from accident. The AppV consists of 5 components. First, a Sensor Layer (SL) judges noxious gas from a current vehicle and a driver's driving habit by collecting data from various sensors such as an Accelerator Position Sensor, an O2 sensor, an Oil Pressure Sensor, etc. and computing the concentration of the CO collected by a semiconductor gas sensor. Second, a Wireless Sensor Communication Layer (WSCL) supports Zigbee, Wi-Fi, and Bluetooth protocol so that it may transfer the sensor data collected in the SL to ISMCU and the data in the ISMCU to a Mobile. Third, an ISMCU integrates the transferred sensor information and transfers the integrated result to a Mobile. Fourth, a Mobile App Block Programming Tool (MABPT) is an independent App generation tool that changes to visual data just the vehicle information which drivers want from a smart phone. Fifth, an Embedded Module (EM) records the data collected through a Smart Phone real time in a Cloud Server. Therefore, because the AppV checks a vehicle' fault and bad driving habits that are not known from sensors and performs self-diagnosis through a mobile, it can reduce time and cost spending on accidents caused by a vehicle's fault and noxious gas emitted to the outside.

The Implementation of Visualization Tool for Snowboard Using Kinect Sensor Data (키넥트 센서 데이터를 이용한 스노보드 동작 시각화 도구의 구현)

  • Park, Young-Nam;Seo, Se-Mi;Park, Myeong-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.5
    • /
    • pp.53-60
    • /
    • 2013
  • This paper proposed visualization tool for motion of snowboarding using Skeleton data obtained by the Microsoft's Kinect sensor. The BBP(Balanced Body Position) posture is a most basic motion in the Snowboarding. This posture is the primary technology for stable turns. The implementation of visualization tool to analyse the BBP posture of snowboard. comparative analysis with standard postures to the ankles, knees, hips and spine angle of joints and body tracking using coordinate information obtained by the Kinect Sensor. Analysis of the final results of the screen through the OpenGL library. This research result could be used to analysis for turn postures of snowboarding.

Temperature Data Visualization for Condition Monitoring based on Wireless Sensor Network (무선 센서 네트워크 기반의 상태 모니터링을 위한 온도 데이터 시각화)

  • Seo, Jung-Hee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.2
    • /
    • pp.245-252
    • /
    • 2020
  • Unexpected equipment defects can cause a huge economic losses in the society at large. Although condition monitoring can provide solutions, the signal processing algorithms must be developed to predict mechanical failures using data acquired from various sensors attached to the equipment. The signal processing algorithms used in a condition monitoring requires high computing efficiency and resolution. To improve condition monitoring on a wireless sensor network(WSN), data visualization can maximize the expressions of the data characteristics. Thus, this paper proposes the extraction of visual feature from temperature data over time using condition monitoring based on a WSN to identify environmental conditions of equipment in a large-scale infrastructure. Our results show that time-frequency analysis can visually track temperature changes over time and extract the characteristics of temperature data changes.

A Proposal of Sensor-based Time Series Classification Model using Explainable Convolutional Neural Network

  • Jang, Youngjun;Kim, Jiho;Lee, Hongchul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.5
    • /
    • pp.55-67
    • /
    • 2022
  • Sensor data can provide fault diagnosis for equipment. However, the cause analysis for fault results of equipment is not often provided. In this study, we propose an explainable convolutional neural network framework for the sensor-based time series classification model. We used sensor-based time series dataset, acquired from vehicles equipped with sensors, and the Wafer dataset, acquired from manufacturing process. Moreover, we used Cycle Signal dataset, acquired from real world mechanical equipment, and for Data augmentation methods, scaling and jittering were used to train our deep learning models. In addition, our proposed classification models are convolutional neural network based models, FCN, 1D-CNN, and ResNet, to compare evaluations for each model. Our experimental results show that the ResNet provides promising results in the context of time series classification with accuracy and F1 Score reaching 95%, improved by 3% compared to the previous study. Furthermore, we propose XAI methods, Class Activation Map and Layer Visualization, to interpret the experiment result. XAI methods can visualize the time series interval that shows important factors for sensor data classification.

Implementation of Effective Visualization Methods for Sensor Data Analysis (센서데이터 분석을 위한 효율적인 가시화 기법의 구현)

  • Seo, Won-Suk;Yun, Chang-Geol;Jung, Soon-Ki;Rho, Yong-Woo
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.530-536
    • /
    • 2007
  • 본 논문에서는 MFL(Magnetic flux leckage) 피그(PIG : Pipeline Inspection Gauge)에서 획득된 센서데이터의 분석을 위한 가시화 기법의 구현을 소개한다. MFL피그는 배관 내부에 삽입되어 배관의 결함이나 특징정보를 파악하기 위해 사용되는 장비로, 다양한 종류의 센서를 지니고 있으며, 각 센서에서 나온 값들은 피그에 탑재된 저장장치에 빠른 샘플링 속도로 저장된다. 분석가는 피그에 저장된 데이터를 가시화 도구를 사용하여, 피그에 샘플링 된 데이터를 통해 배관의 용접부위나 결함과 같은 특징정보를 찾아야 하고, 특징정보인 부분과 그렇지 않은 부분을 쉽게 구별 할 수 있어야 한다. 하지만 센서의 값에 따라 색상에 맵핑하여 보여주는 2차원 가시화 기법만으로는 효율적인 분석이 어렵다. 본 논문은 이를 극복하기 위하여, 센서 값에 맵핑되는 색상 스펙트럼 편집 및 기본 값 조정 기능을 제안한다.

  • PDF