• Title/Summary/Keyword: sensitivity model

Search Result 3,387, Processing Time 0.034 seconds

The Sensitivity Analysis on Failure Parameter of Adjacent Twin Tunnel Using Model Tests (근접 병설터널 모형실험을 통한 붕괴인자 민감도 분석)

  • Han, Yeon-Jin;Shim, Seung-Bo;Choi, Yong-Kyu;Kim, Gun-Ho;Chang, Ock-Sung;Kim, Hong-Taek
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.585-594
    • /
    • 2009
  • In this present study, to performed the model test and estimated the behavior characteristics of twin tunnel in accordance with the variation of the whole failure parameters which is the strength of the ground, distance of tunnel, angle of the joint, installation of tension bolts and the blasting load. To carry out the numerical analysis for verification of model test results and analyze the sensitivity on failure parameters using model test and numerical analysis results. Based on sensitivity analysis results, to propose the most habitually failure parameters in tunnel scale model test.

  • PDF

Sensitivity analysis in Bayesian nonignorable selection model for binary responses

  • Choi, Seong Mi;Kim, Dal Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.1
    • /
    • pp.187-194
    • /
    • 2014
  • We consider a Bayesian nonignorable selection model to accommodate the selection bias. Markov chain Monte Carlo methods is known to be very useful to fit the nonignorable selection model. However, sensitivity to prior assumptions on parameters for selection mechanism is a potential problem. To quantify the sensitivity to prior assumption, the deviance information criterion and the conditional predictive ordinate are used to compare the goodness-of-fit under two different prior specifications. It turns out that the 'MLE' prior gives better fit than the 'uniform' prior in viewpoints of goodness-of-fit measures.

A Study on Mesh Sensitivity of 3-D Homoginized Crack Model for Concrete Fracture Analysis

  • Nam Jin Won;Song Ha Won;Byun Keun Joo;Bang Choon Suk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.462-465
    • /
    • 2004
  • Since quasi-brittle materials like concrete show strain localization behavior accompanied by strain softening, a numerical drawback such as mesh sensitivity is appeared in the finite element analysis. In this paper, the so-called homogenized crack model which was introduced for three dimensional finite element analysis of fracture in concrete is studied for the mesh size dependence problem in fracture analysis. A homogenized crack element having a velocity discontinuity. is averaged to remove the mesh sensitivity in finite element analysis of concrete fracture. Numerical examples show that softening behavior of concrete fracture is successfully predicted without mesh sensitivity using the homogenized crack model.

  • PDF

Probabilistic time-dependent sensitivity analysis of HPC bridge deck exposed to chlorides

  • Ghosh, Pratanu;Konecny, Petr;Lehner, Petr;Tikalsky, Paul J.
    • Computers and Concrete
    • /
    • v.19 no.3
    • /
    • pp.305-313
    • /
    • 2017
  • A robust finite element based reinforced concrete bridge deck corrosion initiation model is applied for time-dependent probabilistic sensitivity analysis. The model is focused on uncertainties in the governing parameters that include variation of high performance concrete (HPC) diffusion coefficients, concrete cover depth, surface chloride concentration, holidays in reinforcements, coatings and critical chloride threshold level in several steel reinforcements. The corrosion initiation risk is expressed in the form of probability over intended life span of the bridge deck. Conducted study shows the time-dependent sensitivity analysis to evaluate the significance of governing parameters on chloride ingress rate, various steel reinforcement protection and the corrosion initiation likelihood. Results from this probabilistic analysis provide better insight into the effect of input parameters variation on the estimate of the corrosion initiation risk for the design of concrete structures in harsh chloride environments.

Model Updating Using the Closed-loop Natural Frequency (폐루프 공진 주파수를 이용한 모델 개선법)

  • Jung Hunsang;Park Youngjin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.9 s.90
    • /
    • pp.801-810
    • /
    • 2004
  • Parameter modification of a linear finite element model(FEM) based on modal sensitivity matrix is usually performed through an effort to match FEM modal data to experimental ones. However, there are cases where this method can't be applied successfully; lack of reliable modal data and ill-conditioning of the modal sensitivity matrix constitute such cases. In this research, a novel concept of introducing feedback loops to the conventional modal test setup is proposed. This method uses closed-loop natural frequency data for parameter modification to overcome the problems associated with the conventional method based on modal sensitivity matrix. We proposed the whole procedure of parameter modification using the closed-loop natural frequency data including the modal sensitivity modification and controller design method. Proposed controller design method is efficient in changing modes. Numerical simulation of parameter estimation based on time-domain input/output data is provided to demonstrate the estimation performance of the proposed method.

ANALYSIS OF AN SEIQRVS EPIDEMIC DYNAMICS FOR INFECTIOUS VIRAL DISEASE: QUARANTINE AS A CONTROL STRATEGY

  • RAKESH SINGH TOMAR;JOYDIP DHAR;AJAY KUMAR
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.1
    • /
    • pp.107-121
    • /
    • 2023
  • An epidemic infectious disease model consists of six compartments viz. Susceptible, Exposed, Infected, Quarantine, Recovered, and Virus with nonlinear saturation incidence rate is proposed to know the viral disease dynamics. There exist two biological equilibrium points for the model system. The system's local and global stability is done through Lyapunov's direct method about equilibrium points. The sensitivity analysis has been performed for the basic reproduction number and equilibrium points through the normalized forward sensitivity index. Sensitivity analysis shows that virus growth and quarantine rates are more sensitive parameters. In support of mathematical conclusions, numerical experimentation has been shown.

Direct Design Sensitivity Analysis of Frequency Response Function Using Krylov Subspace Based Model Order Reduction (Krylov 부공간 모델차수축소법을 이용한 주파수응답함수의 직접 설계민감도 해석)

  • Han, Jeong-Sam
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.2
    • /
    • pp.153-163
    • /
    • 2010
  • In this paper a frequency response analysis using Krylov subspace-based model reduction and its design sensitivity analysis with respect to design variables are presented. Since the frequency response and its design sensitivity information are necessary for a gradient-based optimization, problems of high computational cost and resource may occur in the case that frequency response of a large sized finite element model is involved in the optimization iterations. In the suggested method model order reduction of finite element models are used to calculate both frequency response and frequency response sensitivity, therefore one can maximize the speed of numerical computation for the frequency response and its design sensitivity. As numerical examples, a semi-monocoque shell and an array-type $4{\times}4$ MEMS resonator are adopted to show the accuracy and efficiency of the suggested approach in calculating the FRF and its design sensitivity. The frequency response sensitivity through the model reduction shows a great time reduction in numerical computation and a good agreement with that from the initial full finite element model.

Mesh and turbulence model sensitivity analyses of computational fluid dynamic simulations of a 37M CANDU fuel bundle

  • Z. Lu;M.H.A. Piro;M.A. Christon
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4296-4309
    • /
    • 2022
  • Mesh and turbulence model sensitivity analyses have been performed on computational fluid dynamics simulations executed with Hydra and ANSYS Fluent for a single CANadian Deuterium Uranium (CANDU) 37M nuclear fuel bundle placed within a standard pressure tube. The goal of this work was to perform a methodical analysis to objectively determine an appropriate mesh and to gauge the sensitivity of different turbulence models for CANDU subchannel flow under isothermal conditions. The boundary conditions and material properties are representative of normal operating conditions in a high-powered channel of the Darlington Nuclear Generating Station. Four meshes were generated with ANSYS Workbench Meshing, ranging from 22 to 84 million cells, and analyzed here to determine an appropriate level of mesh resolution and quality. Five turbulence models were compared in the turbulence model sensitivity analysis: standard k - ε, RNG k - ε, realizable k - ε, SST k - ω, and the Reynolds Stress Model. The intent of this work was to gain confidence in mesh generation and turbulence model selection of a single bundle to inform the decision making of subsequent investigations of an entire fuel channel containing a string of twelve bundles.

The Sensitivity Analysis of Parameters of ILLUDAS for Eastiblishment of Urban Runoff Model (도시유출모형확립을 위한 ILLUDAS모형의 매개변수 민감도분석)

  • Seo, Kyu Woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.3
    • /
    • pp.91-98
    • /
    • 1998
  • In this study, the hydrological changes due to urbanization were investigated and fundamental theory and characteristics of typical urban runoff model such as ILLUDAS was studied. Above model was applied for urbanizing Dongsucheon basin, Incheon. The main parameters (II, IA, IS) which are included in model depending on runoff results were determined, and dimensionless values such as total runoff ratio($Q_{TR}$), peak runoff ratio($Q_{PR}$), and runoff sensitivity ratio ($Q_{SR}=Q_{TR}/Q_{PR}$) were estimated in order to evaluate and compare the characteristics of model based on relative sensitivity analysis.

  • PDF

Model updating using the feedback exciter (궤환 가진기를 이용한 모델 개선법)

  • 정훈상;박영진
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.1150-1155
    • /
    • 2001
  • The updating of the FE model to match it with the experimental results needs the modal information. There are two causes where this methodology is ill-equip to deal with; under-determined and ill-conditioning problem. In this research, the feedback exciter which uses the summation of the white noise and the signals from the measurement sensors multiplied with feedback gains is proposed. The new energy path generated by the feedback exciter changes the modal characteristics of the system and this additional modal information can solve the under-determined problem in the model updating. Through the proper selection of the exciter and sensor locations and the feedback gain, the eigenvalue sensitivity of the updating parameters which cause the ill-conditioning of the sensitivity matrix can be modified. This methodology does not require any additional equipments, makes the acquirement of the additional modal information easy and is robust to the measurement noise.

  • PDF