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ANALYSIS OF AN SEIQRVS EPIDEMIC DYNAMICS FOR

INFECTIOUS VIRAL DISEASE: QUARANTINE AS A

CONTROL STRATEGY
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Abstract. An epidemic infectious disease model consists of six compart-

ments viz. Susceptible, Exposed, Infected, Quarantine, Recovered, and
Virus with nonlinear saturation incidence rate is proposed to know the

viral disease dynamics. There exist two biological equilibrium points for
the model system. The system’s local and global stability is done through

Lyapunov’s direct method about equilibrium points. The sensitivity analy-

sis has been performed for the basic reproduction number and equilibrium
points through the normalized forward sensitivity index. Sensitivity analy-

sis shows that virus growth and quarantine rates are more sensitive param-

eters. In support of mathematical conclusions, numerical experimentation
has been shown.
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1. Introduction

By the word outbreak, the eruption of an infectious disease that infects the
verbal population of an area is known. The fusion of ecology multiplexes, the
rapid development of conditions, and different pathogens’ exposures assure infec-
tious diseases proceed to cause significant provocations for a foreseeable future
[2, 12]. Immunity from infection offers human preservation for a period of time
from successive infection by the same disease. One can achieve immunity un-
til lifetime for infections such as measles, rubella, mumps, and chickenpox, i.e.,
some infections induce lifetime immunity. The level of immunity declines with
time for other equivalent diseases. This weakening of immunity happens because
of immunogenic variations in the transmission or depletion of antibodies over a
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period of time. The transformation from full to partial immunity can occur for
distinct periods, like a few weeks with rotavirus and norovirus, for months with
influenza [1, 2, 9, 12, 18].

Quarantine (of suspected to an infection) has historically been among the
oldest public health prevention mechanisms for disseminating transmissible dis-
eases. These interventions effectively enforced from the 13th-century plague out-
break to the 20th-century influenza epidemics. Further, this strategy was used
intensely to battle the propagation of several emerging and reoccurring animal
and human infections, including foot-and-mouth disease, severe acute respira-
tory syndrome (SARS), and the swine influenza pandemic 2009, and SARS-
COV-2 in 2019. The 2003 SARS outbreaks were a significant example of a novel
disease effectively controlled by isolation and quarantine. In SARS-COV-2 2019,
we have also seen the magical effect of isolation and quarantine in preventing
infection’s spreading widely [3, 5, 10, 12, 13, 15, 17]. The incidence rate performs
a significant part in the modeling of infectious diseases. Some factors, such as
the population’s response and lifestyle, may have an indirect or direct influence
on the incidence of new infections, and the increase and fall in epidemics are
likely [8, 12, 14, 21].

We discussed in this work the virus’s impact on infected persons. Also, the
transmission of infectious diseases can be the factor for the rise of viruses in
the vulnerable population. The growth of the virus mortality rate is among
infection management practices. We shall explore the model system to illustrate
the virus’s growth rate and mortality in the vulnerable population [7, 8, 16].

2. Model development

In this part, we will model the infection dynamics with six compartment as
Susceptible(NS), Exposed(NE), Infected(NI), Quarantine(NQ), Recovered(NR),
Virus(NV ). Schematic flow of the disease dynamics is given in the figure (1) and
the following ODEs govern the proposed mathematical model:

dNS

dt
= Λ− βNSNV

1 + aNV
− µ1NS + θNR, (1)

dNE

dt
=

βNSNV

1 + aNV
− ρNE − ξNE − µ1NE , (2)

dNI

dt
= ξNE − µ2NI − γ1NI , (3)

dNQ

dt
= ρNE − µ2NQ − γ2NQ, (4)

dNR

dt
= γ1NI + γ2NQ − µ1NR − θNR, (5)

dNV

dt
= r1NI + r2NE − µ3NV , (6)

with the positive initial population: NS(0) > 0, NE(0) > 0, NI(0) > 0, NQ(0) >
0, NR(0) > 0, NV (0) > 0.
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Figure 1. The diagrammatic flow of the proposed model

Table 1. Parameters descriptions for the proposed model

Parameter Parameter’s Description Dimension
Λ Recruitment rate of susceptible per day
β Transmission coefficient of exposed individuals per day
1
a Infected individual’s Half-saturation constant —-
µ1 Natural mortality rate of population per day
µ2 Mortality rate of population due to infection per day
µ3 Natural mortality rate of virus per day
θ Immunity waning rate of recovered class per day
ξ Transmission rate from exposed to infected class per day
ρ Quarantine rate for exposed class per day
γ1 Recovery rate for infected class per day
γ2 Recovery rate for quarantine class per day
r1 Birth rate of virus from infected class per day
r2 Birth rate of virus from exposed class per day

Total population N at time t is given by N = NS +NE +NI +NQ +NR. The
definitions of parameters are given in Table 1.

3. Positivity and Boundedness

This part has some lemmas for boundedness and positivity of the system
solution (1)-(6), which are:

Lemma 3.1. For non-negative initial conditions the solution of the proposed
system (1)-(6) is non-negative for t ≥ 0.

Proof. Let (NS(t), NE(t), NI(t), NQ(t), NR(t), NV (t)) be the solution with non-
negative initial population. For t ≥ 0, the equation (1) becomes:
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dNS

dt
≥ −(µ1 +

β

a
)NS =⇒ NS(t) ≥ NS(0)e

−(µ1+
β
a )t > 0. (7)

Also for t ≥ 0, the equation (2) reduces to

dNE

dt
≥ −(µ1 + ξ + ρ)NE , =⇒ NE(t) ≥ NE(0)e

−(µ1+ξ+ρ)t > 0. (8)

And for t ≥ 0, the equation (3) reduces to

dNI

dt
≥ −(µ2 + γ1)NI , =⇒ NI(t) ≥ NI(0)e

−(µ2+γ1)t > 0. (9)

Also for t ≥ 0, the equation (4), state that

dNQ

dt
≥ −(µ2 + γ2)NQ, =⇒ NQ(t) ≥ NQ(0)e

−(µ2+γ2)t > 0. (10)

Similarily for t ≥ 0, the equation (5), state that

dNR

dt
≥ −(µ1 + γ2 + θ)NR, =⇒ NR(t) ≥ NR(0)e

−(µ1+γ2+θ)t > 0. (11)

Finally for t ≥ 0, the equation (6), state that

dNV

dt
≥ −µ3NV , =⇒ NV (t) ≥ NV (0)e

−µ3t > 0. (12)

Hence the population remains positive for the system (1)-(6), i.e., NS(t) ≥
0, NE(t) ≥ 0, NI(t) ≥ 0, NQ(t) ≥ 0, NR(t) ≥ 0, NV (t) ≥ 0 for all t ≥ 0. □

Lemma 3.2. If the initial population is positive then the system solution (1)-(6)
is bounded uniformly in Ω, where

Ω = {(NS(t), NE(t), NI(t), NQ(t), NR(t)) : 0 ≤ (NS(t) +NE(t) +NI(t)+

NQ(t) +NR(t)) ≤ Λ
µ

}
.

Proof. Assuming that NS(t) + NE(t) + NI(t) + NQ(t) + NR(t) = N(t). Now
differentiating N(t), then from the system (1)-(6):

dN(t)

dt
= Λ− µ(NS(t) +NE(t) +NI(t) +NQ(t) +NR(t)) = Λ− µN,

here µ = min(µ1, µ2, µ3), which gives that N(t) = N(0)e−µt + Λ
µ , as t → ∞,

N(t) → Λ
µ . Clearly the system (1)-(6) is bounded above for its each population.

Since initially all population are positive hence system is bounded below by zero.
Therefore the bounded biological feasible region Ω is given by

Ω = {(NS(t), NE(t), NI(t), NQ(t), NR(t)) : 0 ≤ (NS(t) +NE(t) +NI(t)+

NQ(t) +NR(t)) ≤ Λ
µ

}
. □

4. Stability behaviour

In this section, we will evaluate the basic reproduction number R0, all the
equilibrium points for the proposed system, and analyze the local and global
stability for each of the equilibrium points [11, 20].
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4.1. Equilibrium point. System has two equilibrium points, namely disease
free E0 = (S0, 0, 0, 0, 0), here S0 = λ

µ1
and endemic, also known as interior,

Ē = (N∗
S , N∗

E , N∗
I , N∗

Q, N∗
R, N∗

V ), here

N∗
E =

µ3(µ2 + γ1)R0

a[ξr1 + (µ2 + γ1)r2] + µ3(µ2 + γ1)
,

N∗
S =

Λ

µ1
+

[
(µ2 + γ1)γ2ρ+ θ(µ2 + γ2)γ1ξ

(µ2 + γ1)(µ2 + γ2)(µ1 + θ)
− S0β(ξr1 + r2(µ2 + γ1))

R0(µ2 + γ1)µ3

]
N∗

E

µ1
,

N∗
I = (

ξ

µ2 + γ1
)N∗

E , N∗
Q = (

ρ

µ2 + γ2
)N∗

E ,

N∗
R = (

1

µ1 + θ
)

[
γ1ξ

µ2 + γ1
+

γ2ρ

µ2 + γ2

]
N∗

E , N∗
V = (

1

µ3
)

[
r1ξ

µ2 + γ1
+ r2

]
N∗

E ,

where R0 is the basic reproduction number. This is defined as expected sec-
ondary cases due to single infected individuals in a fully susceptible population
and determined using Next Generation Matrix similarly as in [6, 19]. For the
system R0 is given by

R0 =
β[ξr1 + (µ2 + γ1)r2]S

0

(ξ + ρ+ µ1)(γ1 + µ2)µ3
=

βΛ[ξr1 + r2(µ2 + γ1)]

µ1µ3(ξ + ρ+ µ1)(µ2 + γ1)
. (13)

The existence condition for endemic equilibrium is R0 > 1, it is clear from (13).

4.2. Local stability of disease-free and endemic equilibrium. Analytical
findings can be discussed by looking at the limiting framework for the system
(1)-(6) where a total population N = Λ

µ1
is considered to remain constant, the

limiting system is governed by set of equations:

dNS

dt
= Λ(1 +

θ

µ1
)− (µ1 + θ)NS − βNSNV

1 + aNV
− θNE − θNI − θNQ, (14)

dNE

dt
=

βNSNV

1 + aNV
− ξNE − ρNE − µ1NE , (15)

dNI

dt
= ξNE − µ2NI − γ1NI , (16)

dNQ

dt
= ρNE − µ2NQ − γ2NQ, (17)

dNV

dt
= r1NI + r2NE − µ3NV . (18)

with the same set of initial conditions.
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4.2.1. Local stability of disease-free equilibrium. The variational matrix
at DFE is:

J0 =


−(µ1 + θ) −θ −θ −θ −βΛ

µ1

0 −(ξ + ρ+ µ1) 0 0 βΛ
µ1

0 ξ −(µ2 + γ1) 0 0
0 ρ 0 −(µ2 + γ2) 0
0 r2 r1 0 −µ3

 .

and corresponding characteristic equation is:

(µ2 + γ2 + λ)(µ1 + θ + λ)[(µ2 + γ1 + λ)(−µ3 − λ)(ξ + ρ+ µ1 + λ)

+
Λ

µ1
(ξr1 + r2λ+ r2µ2 + r2γ1)β] = 0. (19)

root of above equations are −θ − µ1, −γ2 − µ2 and the solution of equation

λ3 + λ2C1 + λC2 + C3 = 0,

where
C1 = γ1 + µ2 + µ1 + ρ+ ξ + µ3,
C2 = ξµ3+µ1µ3+ρµ3+µ2µ3+γ1µ3+ξµ2+ξγ1+ρµ2+ργ1+µ1µ2+µ1γ1−−βΛr2

µ1
,

C3 = ξµ2µ3+ξµ3γ1+ρµ2µ3+ργ1µ3+µ1µ2µ3+µ1γ1µ3− βΛξr1
µ1

− βΛr2µ2

µ1
− βΛr2γ1

µ1
,

since the given two roots are negative and to know the nature of remaing three
roots, we will apply the Routh-Hurwtiz Criterion for the cubic equation, i.e.,
C1 > 0, C3 > 0 and C1C2 > C3 Hence, we have
C1C2 − C3 = (γ1 + ξ + µ1 + µ2 + µ3 + ρ)(µ2µ3 + γ1µ3 + µ2ξ + ξγ1 + ρµ2 +

ργ1 + µ1µ2 + µ1γ1) + (ξ + µ1 + µ3 + ρ)(µ3ξ + ρµ3 + µ1µ3 +
βΛr2
µ1

) + Λβξr1
µ1

> 0,

when R0 < 1. Clearly, C1 > 0, C2 > 0 and (C1C2 − C3) > 0. Hence, Routh-
Hurwitz criteria verify that the remaining three roots of characteristic equation
have negative real part. Since, all five roots of the characteristics equation are
either negative or having negative real part if R0 < 1, hence the DFE (E0) for
the system (14)-(18) is locally asymptotically stable if R0 < 1. Also the similar
approach, Routh-Hurwitz criteria gives the local stability condition for endemic
equilibrium as R0 > 1.

4.3. Global stability dynamics of equilibrium points. We are discussing
global stability of the endemic and disease free equilibrium.

4.3.1. Global stability of disease-free equilibrium. We will follow the
method developed by Castillo-Chavez et.al., [2] for the global stability analysis
of disease-free equilibrium. Let X = (NS) and Z = (NE , NI , NQ, NV ),

therefore U0 = (X0, 0), will represent the DFE where X0 = Λ
µ1
. Now, rewrite

the system (14)-(18) as

dX

dt
= F (X, Z), (20)

dZ

dt
= G(X, Z). (21)
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Clearly system given by (20) becomes from equation (14)

dX

dt
= F (X, Z) = (1 +

θ

µ1
)Λ− (θ + µ1)NS − βNSNV

aNV + 1
− θNE − θNI − θNQ.

At Z = 0, G(X, 0) = 0, and
dX

dt
= F (X, 0) = (1 +

θ

µ1
)Λ− (θ + µ1)X.

As t → ∞, X → X0, Thus, X = X0(= S0) is globally asymptotically stable
for the system given by (20). Now the system given by (20) becomes by using
equations (15)-(18)

G(X, Z) =


−(ξ + µ1 + ρ) 0 0 βS0

ξ −(µ2 + γ1) 0 0
ρ 0 −(µ2 + γ2) 0
r2 r1 0 −µ3




NE

NI

NQ

NV



−


βS0NV − βNSNV

1+aNV

0
0
0

 , (22)

on comparing the system (22) with G(X, Z) = BZ − Ĝ(X, Z), we get

B =


−(ξ + µ1 + ρ) 0 0 βS0

ξ −(γ1 + µ2) 0 0
ρ 0 −(µ2 + γ2) 0
r2 r1 0 −µ3


and Ĝ(X, Z) =


βS0NV − βNSNV

1+aNV

0
0
0

, clearly Ĝ(X, 0) = 0.

Thus both the conditions discussed in [2] are met, then the DFE (E0) is globally
asymptotically stable if R0 < 1.

4.3.2. Global stability dynamics of Endemic Equilibrium. We will use
Lyapunov’s Direct Method to show the endemic equilibrium’s global stability
for the system (14)-(18). Let a positive definite function:

V1 =
1

2
(D1N

2
S +D2N

2
E +D3N

2
I +D4N

2
Q +D5N

2
V ), (23)

Then using the system (14)-(18) in dV1

dt , we get,

dV1

dt
= (D1NS)(Λ(1 +

θ

µ
)− µ1NS − θNS − βNSNV

1 + aNV
− θNE − θNI − θNQ)

+(D2NE)(
βNSNV

1 + aNV
− ξNE − ρNE − µ1NE)

+(D3NI)(ξNE − µ2NI − γ1NI) + (D4NQ)(ρNE − µ2NQ − γ2NQ)

+(D5NV )(r1NI + r2NE − µ3NV ), (24)
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dV1

dt
= D1(ΛNS +

θΛNS

µ1
− µ1N

2
S − θN2

S − θNSNE − θNSNI − θNSNQ)

+D2(−ξN2
E − ρN2

E − µ1N
2
E) +D3(ξNENI − µ2N

2
I − γ1N

2
I ) (25)

+D4(ρNENQ − µ2N
2
Q − γ2N

2
Q) +D5(r1NINV + r2NENV − µ3N

2
V ),

Using the inequality ±2ab ≤ (a2 + b2), we get,

dV1

dt
≤ −[(

a11N
2
S

3
− a12NSNE +

a22N
2
E

4
) + (

a22N
2
E

4
− a23NENI +

a33N
2
I

2
)

+(
a22N

2
E

4
− a24NENQ +

a44N
2
Q

2
) + (

a22N
2
E

4
− a25NENV +

a55N
2
V

2
)

+(
a33N

2
I

2
− a35NINV +

a55N
2
V

2
) + (

a11N
2
S

2
− a13NSNI +

a33N
2
I

3
)

+(
a11N

2
S

2
− a14NSNQ +

a44N
2
Q

2
)], (26)

where a11 = D1(µ1 + θ − βΛ
2µ1

), a12 = D1θ, a13 = D1θ, a14 = D1θ, a22 =

D2(µ1 + ξ + ρ− βΛ
2µ1

), a23 = D3ξ, a24 = D4ρ, a25 = D5r2, a33 = D3(µ2 + γ1),

a35 = D5r1, a44 = D4(µ2 + γ2), a55 = D5µ3. The following conditions are
observed by Lyapunov’s direct method of stability for endemic equilibrium’s
global or non-linearly stability.

(1)[θ + µ1 − Λβ
2µ1

][µ1 + ξ + ρ− Λβ
2µ1

]D2 > D1θ
2,

(2)[ξ + µ1 + ρ− Λβ
2µ1

][µ2 + γ1]D2 > D3ξ
2,

(3)[ξ + µ1 + ρ− Λβ
2µ1

][µ2 + γ2]D2 > ρ2D4,

(4)[ξ + µ1 + ρ− Λβ
2µ1

][µ3]D2 > D5r
2
2,

(5)[γ1 + µ2][µ3]D3 > r21D5,

(6)[θ + µ1 − Λβ
2µ1

][µ2 + γ1]D3 > D1θ
2,

(7)[θ + µ1 − Λβ
2µ1

][µ2 + γ2]D4 > D1θ
2.

Selecting again D1 = 1, we observe

(i) 4θ2

3(µ1+θ− βΛ
2µ1

)(µ1+ξ+ρ− Λβ
2µ1

)
< D2,

(ii) θ2

(µ2+γ1)(µ1+θ− βΛ
2µ1

)
< D3 < θ2(µ2+γ1)

ξ2(µ1+θ− Λβ
2µ1

)
,

(iii) 2θ2

3(µ2+γ2)(µ1+θ− Λβ
2µ1

)
< D4 < 2θ2(µ2+γ2)

3ρ2(µ1+θ− βΛ
2µ1

)
,

(iv) 2θ2µ3

3r2(µ1+θ− Λβ
2µ1

)
> D5,

where r stands simultaneously for r1 or r2. Finally global stability conditions
for endemic equilibrium are:

(i) [θ + µ1 − Λβ
2µ1

] > 0.
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(ii) [ξ + µ1 + ρ− Λβ
2µ1

] > 0.

(iii) [θ + µ1 − Λβ
2µ1

][µ1 + ξ + ρ− Λβ
2µ1

] > [θ2].

5. Numerical Simulation

Earlier established results are illustrated numerically in this segment for the
parameter’s value given in the table 2.

Table 2. The of parameters values used for numerical simulation

Parameter Value Dimension
Recruitment rate of susceptible (Λ) 0.400 per day
Transmission coefficient of exposed class (β) 0.008 per day
Half-saturation constant of infected class (1/a) 10.00 —–
Natural mortality rate of susceptible and exposed
class (µ1)

0.005 per day

Natural mortality rate of infectious and quarantine
class (µ2)

0.008 per day

Natural mortality rate of virus (µ3) 0.800 per day
Immunity waning rate (θ) 0.010 per day
Infectious rate of exposed class (ξ) 0.100 per day
Quarantine rate of exposed class (ρ) 0.100 per day
Recovery rate of infected class (γ1) variable per day
Recovery rate of quarantine class (γ2) 0.040 per day
Virus’ birth rate due to infectious class ( r1) variable per day
Virus’ birth rate due to exposed class ( r2) 0.100 per day

(a) For the given set of parameters with virus birth rate and recovery rate for
infected class r1 = 0.3, γ1 = 0.03, we obtained effective reproduction number
R0 = 3.47112 > 1 and endemic equilibrium Ē(30.3302, 2.84208, 7.47915, 5.92099,
3.15994). Also the global stability conditions,

[µ1+θ− βΛ
2µ1

] > 0, [µ1+ξ+ρ− βΛ
2µ1

] > 0, and [µ1+θ− βΛ
2µ1

][µ1+ξ+ρ− βΛ
2µ1

] > [θ2],

for the same set of parameters, are satisfied. So therefore the endemic equilib-
rium Ē is globally asymptotically stable (See Figure 3).

(b) For the given set of parameters with virus birth rate and recovery rate for
infected class r1 = 0.15, γ1 = 0.09, we obtained effective reproduction number
R0 = 0.987556 < 1 and the DFE E0(80, 0, 0, 0, 0). So it is clear that DFE E0 is
globally asymptotically stable (See Figure 2).

(c) For the given set of parameters with virus birth rate and recovery rate for
infected class r1 = 0.15, γ1 = 0.09, we obtained effective reproduction number
R0 = 0.987556 < 1 and the DFE E0(80, 0, 0, 0, 0). If we slightly lower the
quarantine parameter from ρ = 0.10 to ρ = 0.30 DFE E0 loses its stability and
EE Ē become stable and this phenomena is shown in figure (4) So it is clear
that quarantine behave as control strategy.
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Figure 2. Population densities at virus rate r1 = 0.15 and
Quarantine rate ρ = 0.10
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Figure 3. Population densities at virus rate r1 = 0.30
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Figure 4. Population densities at quarantine rate ρ = 0.30
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6. Sensitivity Analysis

In this section, sensitivity for R0 and endemic steady state is analyzed for
system parameters. We have derive the expression and evaluate the Normalized
sensitivity indices for R0 corresponding to parameters Λ, β, µ1, ρ, µ2, µ3, ξ, r1,
r2, γ1, and γ2 similar as in [4]:

ΥR0

Λ = ∂R0

∂Λ
Λ
R0

= 1,

ΥR0
µ1

= ∂R0

∂µ1

µ1

R0
= −(ξ+ρ+2µ1)

ξ+ρ+µ1
,

ΥR0
µ2

= ∂R0

∂µ2

µ2

R0
= −ξ r1µ2

(γ1+µ2)(ξ r1+ r2γ1+ r2µ2)
,

ΥR0
µ3

= ∂R0

∂µ3

µ3

R0
= −1,

ΥR0

β = ∂R0

∂β
β
R0

= 1,

ΥR0
ρ = ∂R0

∂ρ
ρ
R0

= −ρ
ρ+ξ+µ1

,

ΥR0
γ1

= ∂R0

∂γ1

γ1

R0
= −ξ r1γ1

(γ1+µ2)(ξ r1+ r2γ1+ r2µ2)
,

ΥR0

ξ = ∂R0

∂ξ
ξ
R0

= ξ(ρ r1+ r1µ1− r2γ1− r2µ2)
(ξ+ρ+µ1)(ξ r1+ r2γ1+ r2µ2)

,

ΥR0
r1 = ∂R0

∂ r1
r1
R0

= r1ξ
ξ r1+ r2γ1+ r2µ2

,

ΥR0
r2 = ∂R0

∂ r2
r2
R0

= r2(γ1+µ2)
ξ r1+ r2γ1+ r2µ2

.

For a particular set of parametric values shown in Table 2, the sensitivity
indices are given in Table 3. From the table 3, we explore that Λ and β are
highly sensitive, r1, r2, ρ, ξ, µ2 are less sensitive and γ1, µ3, µ1 are sensitive to
R0.

Table 3. The sensitivity indices, ΥR0
xj

= ∂R0

∂xj
× xj

R0
, of R0 cor-

responding parameters xj for values given in Table 2 at r1 =
0.30

Parameters (xj) Sensitivity index ( ΥR0
xj

)

Λ 1.0000
β 1.0000
µ1 -1.0244
µ2 -0.18686
µ3 -1.0000
ξ 0.39977
ρ -0.48781
γ1 -0.70071
r1 0.88757
r2 0.11243

Similarly, we have calculated the normalized sensitivity indices for each state
variable of the interior equilibrium Ē = (N∗

S , N∗
E , N∗

I , N∗
Q, N∗

R, N∗
V ) corre-

sponding to Λ, β, µ1, µ2, µ3, ρ, a, ξ, θ, r1, r2, γ1, and γ2. which are given in Table
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4 and graphically presented in figure 5. From Table 4, we have explored that
N∗

S ,N
∗
E ,N

∗
I ,N

∗
Q,N

∗
R,N

∗
V are highly sensitive to parameters Λ, β, µ1, µ3, r1 and γ1.

Table 4. The sensitivity indices, Υyi
xj

= ∂yi

∂xj
× xj

yi
, of endemic

equilibrium’s state variables, yi, corresponding to parameters,
xj

xj Υ
N∗

S
xj Υ

N∗
E

xj Υ
N∗

I
xj Υ

N∗
Q

xj Υ
N∗

R
xj Υ

N∗
V

xj

Λ 0.33728 1.40460 1.40460 1.40460 1.40460 1.40460
µ1 -0.250206 -1.14359 -1.14359 -1.14359 -1.24217 -1.14359
µ2 0.131032 -0.04563 -0.25616 -0.212301 -0.44916 -0.23249
µ3 0.662712 -0.40468 -0.404675 -0.404675 -0.40468 -1.40468
γ1 0.480969 -0.214446 -1.00392 -0.214446 -0.08007 -0.91516
γ2 0.013869 0.057757 0.057757 -0.775576 0.17005 0.05776
β -0.872125 0.53255 0.53255 0.53255 0.52155 0.53255
ξ -0.263684 -0.320832 0.679168 -0.320832 0.15916 0.56674
ρ 0.328901 -0.661772 -0.661772 0.338228 -0.14632 -0.66177
r1 -0.588206 0.359179 0.359179 0.359179 0.35918 1.24675
r2 -0.074506 0.045496 0.045496 0.045496 0.0455 0.15792
θ 0.093956 0.391291 0.391291 0.391291 -0.33771 0.39129
a 0.209413 -0.127875 -0.127875 -0.127875 -0.11688 -0.127875
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Figure 5. Sensitivity Indices for Endemic Equilibrium State Variables
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7. Summary of the Work

We have proposed and analyzed a six compartmental epidemic model to ex-
plore the viral disease dynamics and found two biological equilibrium points:
disease-free and endemic. Also derived an expression for most important thresh-
old stability parameter i.e., basic reproduction number (R0) and found that DFE
(E0) is locally stable if R0 < 1 and EE (Ē) is stable if (R0 < 1). The global
stability condition is derived for DFE (E0) and EE (Ē) using Lyapunov’s Di-
rect Method and found that DFE (E0) local stability condition R0 < 1 remain
sufficient for global stability. But EE (Ē) local stability condition does not re-
main sufficient for global stability. Sensitivity analysis is also performed using
Normalized forward sensitivity index for reproduction number R0 and EE (Ē)
to find the most sensitive parameters, which are given in Table 3 and 4 and
also represented graphically in figure 5. It is also found from sensitivity anal-
ysis that virus growth rate r1 is also more sensitive to threshold parameter R0

and numerically shown that by changing the value of r1 from 0.15 to 0.30 DFE
(E0) becomes unstable and EE (Ē) becomes Stable (see in figures (2) and (3)).
Numerically it is shown that by controlling quarantine parameter, the disease
can be eradicated from the environment, i.e., quarantine can play as a control
strategy in the absence of vaccination for any viral disease.

Conflicts of interest : The authors declare no conflict of interest.

Data availability : Not applicable

Acknowledgments : The authors acknowledge the ABV-IIITM and the
ministry of education, India, for providing the necessary facility for this work.

References

1. K. Best and A.S. Perelson, Mathematical modeling of within-host zika virus dynamics,

Immu. reviews 285 (2018), 81-96.

2. K.C. Castillo-Chavez, S. Blower, P. Van den Driessche, D. Kirschner, and A.A. Yakubu,
Mathematical approaches for emerging and reemerging infectious diseases: an introduction,
Spri. Scie. Busi. Media 1 2002.

3. F. Chamchod and N.F. Britton, On the dynamics of a two-strain influenza model with
isolation, Math. Mode. Natu. Phenomena 7 (2012), 49-61.

4. N. Chitnis, J.M. Hyman, and J.M. Cushing, Determining important parameters in the
spread of malaria through the sensitivity analysis of a mathematical model, Bull. math.

biology 70 (2008), 1272-1296.
5. T. Day, A. Park, N. Madras, A. Gumel, and J. Wu, When is quarantine a useful control

strategy for emerging infectious diseases, Amer. J. Epidemiology 163 (2006), 479-485.
6. O. Diekmann, J.A.P. Heesterbeek, and J.A. Metz, On the definition and the computa-

tion of the basic reproduction ratio r0 in models for infectious diseases in heterogeneous
populations, J. math. biology 28 (1990), 365-382.

7. A. Elaiw and N.H. AlShamrani, Global properties of general viral infection models with
humoral immune response, Diff. Equa. Dyna. Systems 25 (2017), 453-479.



120 R.S. Tomar et al.

8. K. Hattaf and Y. Yang, Global dynamics of an age-structured viral infection model

with general incidence function and absorption, Int. J. Biomathematics 11 (2018).
doi.org/10.1142/S17935245185006511850065

9. A.L. Hill, D.I. Rosenbloom, M.A. Nowak, and R.F. Siliciano, Insight into treatment of hiv

infection from viral dynamics models, Immu. reviews 285 (2018), 9-25.
10. C.N. Ngonghala, E. Iboi, S. Eikenberry, M. Scotch, C.R. MacIntyre, M.H. Bonds, and

A.B. Gumel, Mathematical assessment of the impact of non-pharmaceutical interventions

on curtailing the 2019 novel coronavirus, Math. Biosciences (2020), 108-364.
11. L. Perko, Differential equations and dynamical systems, Spri. Scie. Busi. Media, 2013.

12. M. Safi, Mathematical Analysis of The Role of Quarantine and Isolation in Epidemiology,

Ph.D. thesis, University of Manitoba Winnipeg Manitoba, 2010.
13. M.A. Safi and A.B. Gumel, Dynamics of a model with quarantine-adjusted incidence and

quarantine of susceptible individuals, J. Math. Anal. Appl. 399 (2013), 565-575.
14. G.P. Sahu and J. Dhar, Analysis of an sveis epidemic model with partial temporary im-

munity and saturation incidence rate, Appl. Math. Modelling 36 (2012), 908-923.

15. G.P. Sahu and J. Dhar, Dynamics of an seqihrs epidemic model with media coverage,
quarantine and isolation in a community with pre-existing immunity, J. math. anal. appl.

421 (2015), 1651-1672.

16. P.K. Srivastava, M. Banerjee, and P. Chandra, Dynamical model of in-host hiv infection:
With drug therapy and multi viral strains, J. Biol. Systems 20 (2012), 303-325.

17. C. Sun and W. Yang, Global results for an sirs model with vaccination and isolation, Nonl.

Anal.: Real World Applications 11 (2010), 4223-4237.
18. M. Van Baalen, Contact networks and the evolution of virulence Adaptive dynamics of in-

fectious diseases: in pursuit of virulence management, Cambridge Univ. Press, Cambridge,

UK, 2002, 85-103.
19. P. Van den Driessche and J. Watmough, Reproduction numbers and subthreshold endemic

equilibria for compartmental models of disease transmission, Math. biosciences 180 (2002),

29-48.
20. S. Wiggins, Introduction to applied nonlinear dynamical systems and chaos, Spri. Scie.

Busi. Media, 2003.
21. R. Xu and Z. Ma, Global stability of a delayed seirs epidemic model with saturation

incidence rate, Nonlinear Dynamics 61 (2010), 229-239.

Rakesh Singh Tomar received M.Sc. from Jiwaji University and Ph.D. pursuing at ABV-

Indian Institute of Information Technology & Management. His research interests include

mathematical epidemiology and biological computation.

Department of Applied Sciences, ABV- Indian Institute of Information Technology & Man-
agement Gwalior, Madhya Pradesh, India-474015.

e-mail: rakeshtomar2k15@gmail.com

Joydip Dhar received M.Sc. from Visva-Bharati University, Santiniketan, and Ph.D. from

IIT, Kanpur in 1997. He is currently a professor at ABV-Indian Institute of Information
Technology & Management, since 2006. His research interests are Industrial Mathematics:

Mathematical Modeling and Simulation in Environmental, EMS, Management systems:
Financial Mathematics and Fuzzy logic applications.

Department of Applied Sciences, ABV- Indian Institute of Information Technology & Man-

agement Gwalior, Madhya Pradesh, India-474015.

e-mail: jdhar@iiitm.ac.in



Analysis of an SEIQRVS epidemic dynamics .... 121

Ajay Kumar received M.Sc. from IIT Roorkee, and Ph.D. from IIT Roorkee. He is cur-

rently an associate professor at ABV-Indian Institute of Information Technology & Man-
agement, since 2009. His research interests are Reliability, Statistics, Fuzzy Sets and Fuzzy

Logic, Optimization, Modeling and Simulation.

Department of Applied Sciences, ABV- Indian Institute of Information Technology & Man-
agement Gwalior, Madhya Pradesh, India-474015.

e-mail: ajayfma@iiitm.ac.in




