• Title/Summary/Keyword: semisimple Banach algebra

Search Result 12, Processing Time 0.024 seconds

ON HOMOMORPHISMS ON $C^*$-ALGEBRAS

  • Cho, Tae-Geun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.22 no.2
    • /
    • pp.89-93
    • /
    • 1985
  • One of the most important problems in automatic continuity theory is to solve the question of continuity of an algebra homomorphism from a Banach algebra into a semisimple Banach algebra with dense range. Many results on this subject are obtained imposing some conditions on the domains or the ranges of homomorphisms. For most recent results and references in automatic continuity theory one may refer to [1], [4] and [5]. In this note we study some properties of homomorphisms from $C^{*}$-algebras into Banach algebras. It is shown that the range of an isomorphism from a $C^{*}$-algebra into a Banach algebra contains no non zero element of the radical of B. Using this result we show that the same holds for a continuous homomorphism, hence a Banach algebra which is the image of a $C^{*}$-algebra under a continuous homomorphism is necessarily semisimple. Thus if there is a homomorphism from a $C^{*}$-algebra onto a non-semisimple Banach algebra it must be discontinuous. Also it follows that every non zero homomorphism from a $C^{*}$-algebra into a radical algebra is discontinuous. Then we make a brief observation on the behavior of quasinilpotent element of noncommutative $C^{*}$-algebras in relation with continuous homomorphisms.momorphisms.

  • PDF

ON LEFT DERIVATIONS AND DERIVATIONS OF BANACH ALGEBRAS

  • Jung, Yong-Soo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.659-667
    • /
    • 1998
  • In this paper we show that every left derivation on a semiprime Banach algebra A is a derivation which maps A into the intersection of the center of A and the Jacobson radical of A, and hence every left derivation on a semisimple Banach algebra is always zero.

  • PDF

LEFT DERIVATIONS AND DERIVATIONS ON BANACH ALGEBRAS

  • YONG-SOO JUNG
    • Journal of applied mathematics & informatics
    • /
    • v.4 no.1
    • /
    • pp.263-271
    • /
    • 1997
  • In this paper we show that every left derivation on a semiprime Banach algebra A is a derivation which maps A into the intersection of the center of A and the jacobson radical of A and hence every left derivation on a semisimple Banach algebra is always zero.

ON DERIVATIONS IN NONCOMMUTATIVE SEMISIMPLE BANACH ALGEBRAS

  • Jung, Yong-Soo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.583-590
    • /
    • 1998
  • The purpose of this paper is to prove the following results: Let A be a noncommutative semisimple Banach algebra. (1) Suppose that a linear derivation D : A $\to A$ is such that [D(x),x]x=0 holds for all $x \in A$. Then we have D=0. (2) Suppose that a linear derivation $D:A\to A$ is such that $D(x)x^2 + x^2D(x)=0$ holds for all $x \in A$. Then we have C=0.

  • PDF

LEFT DERIVATIONS ON BANACH ALGEBRAS

  • Jung, Yong-Soo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.8 no.1
    • /
    • pp.37-44
    • /
    • 1995
  • In this paper we show that every left derivation on a semiprime Banach algebra A is a derivation which maps A into the intersection of the center of A and the Jacobson radical of A, and hence every left derivation on a semisimple Banach algebra is zero.

  • PDF

AUTOMATIC CONTINUITY OF HOMOMORPHIMS FROM BANACH ALGEBRAS

  • Kim, Gil-Tae
    • Journal of applied mathematics & informatics
    • /
    • v.4 no.1
    • /
    • pp.273-278
    • /
    • 1997
  • Let A be a Banach algebra and B a semisimple annifilator Banach algebra. Then every homomorphism from A into B with range is continuous. Also we obtain condition s for the automatic continuity of homomorphism with dense range.

A RESULT CONCERNING DERIVATIONS IN NONCOMMUTATIVE BANACH ALGERAS

  • Chang, Ick-Soon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.10 no.1
    • /
    • pp.97-104
    • /
    • 1997
  • The purpose of this paper is to prove the following result: Let A be a noncommutative semisimple Banach algebra. Suppose that $D:A{\rightarrow}A$, $G:A{\rightarrow}A$ are linear derivations such that [G(x), x]D(x) = D(x)[G(x), x] = 0, [D(x), G(x)] = 0 hold for all $x{\in}A$. In this case either D = 0 or G = 0.

  • PDF

A note on derivations of banach algebras

  • Kim, Gwang-Hui
    • Bulletin of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.367-372
    • /
    • 1995
  • In 1955 Singer and Wermer [12] proved that every bounded derivation on a commutative Banach algebra maps into its radical. They conjectured that the continuity of the derivation in their theorm can be removed. In 1988 Thomas [13] proved their conjecture ; Every derivation on a commutative Banach algebra maps into its radical. For noncommutative versions, in 1984 B. Yood [15] proved that the continuous derivations on Banach algebras satisfing [D(a),b] $\in$ Rad(A) for all a, b $\in$ A have the radical range, where [a,b] will be denote the commutator ab-ba. In 1990 M.Bresar and J.Vukman [1] have generlized Yood's result, that is, the continuous linear Jordan derivation on Banach algebra that satisfies [D(a),a] $\in$ Rad(A) for all a $\in$ A has the radical range. In next year Mathieu and Murphy [5] proved that every bounded centralizing derivation on Banach algebras has its image in the radical. Mathieu and Runde [6] removed the boundedness of that.

  • PDF