Commun. Korean Math. Soc. 33 (2018), No. 1, pp. 165-170

 $\begin{array}{l} {\rm https://doi.org/10.4134/CKMS.c170071} \\ {\rm pISSN:~1225\text{-}1763~/~eISSN:~2234\text{-}3024} \end{array}$

AUTOMATIC CONTINUITY OF n-JORDAN HOMOMORPHISMS ON BANACH ALGEBRAS

ABBAS ZIVARI-KAZEMPOUR

ABSTRACT. In this paper, we show that every unital n-Jordan homomorphism φ from a Banach algebra $\mathcal A$ onto a semisimple commutative Banach algebra $\mathcal B$ is continuous.

1. Introduction

Let \mathcal{A} and \mathcal{B} be complex algebras and let $n \geq 2$ be an integer. Let $\varphi : \mathcal{A} \longrightarrow \mathcal{B}$ be a linear map. Then φ is called an *n*-homomorphism [anti *n*-homomorphism] if, for all $a_1, a_2, \ldots, a_n \in \mathcal{A}$,

$$\varphi(a_1 a_2 \cdots a_n) = \varphi(a_1) \varphi(a_2) \cdots \varphi(a_n) [= \varphi(a_n) \cdots \varphi(a_2) \varphi(a_1)].$$

A 2-homomorphism is then just a homomorphism in the usual sense. Furthermore, every homomorphism is clearly also an n-homomorphism for all $n \geq 2$, but the converse is false, in general. The concept of an n-homomorphism was studied for complex algebras by Hejazian et al. in [9].

Automatic continuity of n-homomorphisms considered for factorizable Banach algebras in [10], and it is extended for non factorizable Banach algebras in [8]. One may refer to [3] for automatic continuity of 3-homomorphism. It is due to Park and Trout that every *-preserving n-homomorphism between C^* -algebras is continuous [13].

In [7] Eshaghi Gordji introduced the concept of an n-Jordan homomorphism. A linear map φ between Banach algebras $\mathcal A$ and $\mathcal B$ is called an n-Jordan homomorphism if

$$\varphi(a^n) = \varphi(a)^n, \quad (a \in \mathcal{A}).$$

A 2-Jordan homomorphism is called simply a Jordan homomorphism.

Obviously, each n-homomorphism is an n-Jordan homomorphism, but in general the converse is false.

Zelazko [14] has given a characterization of Jordan homomorphism, that we mention in the following. See [15] for another approach to the same result.

Received February 27, 2017; Accepted May 24, 2017.

 $2010\ Mathematics\ Subject\ Classification.\ {\it Primary}\ 47B48;\ Secondary\ 46L05,\ 46H25.$

 $Key\ words\ and\ phrases.$ automatic continuity, $n ext{-}Jordan\ homomorphism}$, semisimple.

Theorem 1.1. Suppose that \mathcal{A} is a Banach algebra, which need not be commutative, and suppose that \mathcal{B} is a semisimple commutative Banach algebra. Then each Jordan homomorphism $\varphi: \mathcal{A} \longrightarrow \mathcal{B}$ is a homomorphism.

Some results about 3-Jordan homomorphisms on Banach and C^* -algebras obtained by the author in [16].

In this paper we investigate automatic continuity of n-Jordan homomorphism, and prove that every unital n-Jordan homomorphism φ from a Banach algebra $\mathcal A$ into a semisimple commutative Banach algebra $\mathcal B$ is continuous.

We say that a linear map $\varphi : \mathcal{A} \longrightarrow \mathcal{B}$ is a co-Jordan homomorphism if for all $a \in \mathcal{A}$, $\varphi(a^2) = -\varphi(a)^2$. For example, $\varphi : \mathbb{R} \longrightarrow \mathbb{R}$ defined by $\varphi(a) = -a$ is a co-Jordan homomorphism.

2. Automatic continuity of n-Jordan homomorphisms

It is well known that every multiplicative linear functional φ on Banach algebra \mathcal{A} is continuous and $\|\varphi\| \leq 1$, see [2] for example.

For Jordan (co-Jordan) homomorphism we have the following.

Proposition 2.1. Let \mathcal{A} be a Banach algebra and $\varphi : \mathcal{A} \longrightarrow \mathbb{C}$ be a Jordan or co-Jordan homomorphism. Then $\|\varphi\| \leq 1$.

Proof. Let φ be a Jordan homomorphism and suppose that there exists $a \in \mathcal{A}$ with ||a|| < 1 and $|\varphi(a)| > 1$. Take $b = a/\varphi(a)$. Then ||b|| < 1 and $\varphi(b) = 1$, which is a contradiction by Theorem 6 of [15]. Thus, for all $a \in \mathcal{A}$ with ||a|| < 1, $|\varphi(a)| \le 1$. The proof is similar, if φ is a co-Jordan homomorphism.

Part (1) of the next theorem is due to Sinclair, and part (2) is due to Civin and Yood [4].

Theorem 2.2. Let A and B be Banach algebras and $\varphi: A \longrightarrow B$ be a Jordan homomorphism. Then φ is continuous if either:

- (1) \mathcal{B} is semisimple and $\varphi(\mathcal{A}) = \mathcal{B}$, or
- (2) \mathcal{B} is strongly semisimple and $\varphi(\mathcal{A})$ is dense in \mathcal{B} .

Proof. See [12]. \Box

A Banach algebra \mathcal{A} is called semiprime if $a\mathcal{A}a = \{0\}$ implies a = 0.

Proposition 2.3. Let φ be a surjective Jordan homomorphism from Banach algebra \mathcal{A} onto a semiprime Banach algebra \mathcal{B} . Then φ is continuous if either:

- (1) \mathcal{B} has a one-sided minimal ideals, or
- (2) \mathcal{B} is finite dimensional.

Proof. If \mathcal{B} has a one-sided minimal ideal, then it is semisimple by Corollary 4.1 of [6]. If \mathcal{B} is finite dimensional, then it is semisimple by Corollary 8 of [5]. Thus, in both cases the result follows from Theorem 2.2.

The next result follows from Zelazko's Theorem and Theorem 8, § 17 of [2].

Theorem 2.4. Let A and B be Banach algebras and $\varphi : A \longrightarrow B$ be a Jordan homomorphism. If B is commutative and semisimple, then φ is continuous.

Theorem 2.5. Let φ be a 3-Jordan homomorphism between unital Banach algebras \mathcal{A} and \mathcal{B} . If \mathcal{B} is commutative and semisimple, then φ is continuous.

Proof. Let $\psi: \mathcal{B} \longrightarrow \mathbb{C}$ be a 3-Jordan homomorphism. Thus, ψ is either a Jordan homomorphism or a co-Jordan homomorphism by Lemma 2.3 of [16]. Hence, ψ is bounded by Proposition 2.1, and

$$\psi \circ \varphi(a^3) = \psi(\varphi(a^3)) = \psi(\varphi(a)^3) = \psi(\varphi(a))^3 = \psi \circ \varphi(a)^3.$$

Therefore $\psi \circ \varphi$ is a 3-Jordan homomorphism from \mathcal{A} into \mathbb{C} , so it is bounded. Now suppose that (a_m) is a sequence in \mathcal{A} such that $\lim_m a_m = a$ and $\lim_m \varphi(a_m) = b$. Then

$$\psi(b) = \psi(\lim_{m} \varphi(a_m)) = \lim_{m} \psi \circ \varphi(a_m) = \psi \circ \varphi(a),$$

thus, $\psi(b-\varphi(a))=0$. Since $\mathcal B$ is semisimple, we get $\varphi(a)=b$, and the close graph Theorem applies.

The next lemma proves that each Jordan homomorphism is n-Jordan.

Lemma 2.6. Every Jordan homomorphism φ between Banach algebras \mathcal{A} and \mathcal{B} is n-Jordan homomorphism, for $n \geq 2$.

Proof. Assume that φ is a Jordan homomorphism, then $\varphi(a^2) = \varphi(a)^2$ for all $a \in \mathcal{A}$. Replacing a by a + b, we get

(2.1)
$$\varphi(ab + ba) = \varphi(a)\varphi(b) + \varphi(b)\varphi(a).$$

Replacing b by a^2 in (2.1), gives

for all $a \in \mathcal{A}$, and so φ is 3-Jordan homomorphism. Replacing b by a^3 in (2.1), we get

(2.3)
$$2\varphi(a^4) = \varphi(a)\varphi(a^3) + \varphi(a^3)\varphi(a), \quad (a \in \mathcal{A}).$$

By (2.2) and (2.3), we get $\varphi(a^4) = \varphi(a)^4$. Thus, φ is 4-Jordan homomorphism. An easy induction argument now finishes the proof.

A linear map φ between unital Banach algebras \mathcal{A} and \mathcal{B} is called unital if $\varphi(e) = e$, where e is the unit for both \mathcal{A} and \mathcal{B} .

Theorem 2.7. For $n \geq 2$, every unital (n + 1)-Jordan homomorphism φ between Banach algebras \mathcal{A} and \mathcal{B} is n-Jordan homomorphism.

Proof. Let n=2 and $\varphi: \mathcal{A} \longrightarrow \mathcal{B}$ be a unital 3-Jordan homomorphism. Then for all $a \in \mathcal{A}$,

(2.4)
$$\varphi(a^3) = \varphi(a)^3.$$

Replacing a by a + e in (2.4), we get $\varphi(a^2) = \varphi(a)^2$. So φ is a Jordan homomorphism.

Now let n = 3, and φ be a unital 4-Jordan homomorphism. Then $\varphi(a^4) = \varphi(a)^4$ for all $a \in \mathcal{A}$. Replacing a by a + e, we get

(2.5)
$$\varphi(3a^2 + 2a^3) = 3\varphi(a)^2 + 2\varphi(a)^3.$$

Replacing a by a + e in (2.5), we get

(2.6)
$$\varphi(a^2) = \varphi(a)^2.$$

It follows from (2.5) and (2.6) that $\varphi(a^3) = \varphi(a)^3$ for all $a \in \mathcal{A}$. A similar discussion reveals that the result will be established for $n \geqslant 4$.

The next corollary follows from Lemma 2.6 and Theorem 2.7.

Corollary 2.8. A unital linear map φ between Banach algebras \mathcal{A} and \mathcal{B} is Jordan if and only if it is an n-Jordan homomorphism for $n \geq 2$.

From Corollary 2.8 and Theorem 2.4, we deduce the following result.

Corollary 2.9. Let A and B be Banach algebras, where B is semisimple and commutative. Then every unital n-Jordan homomorphism $\varphi: A \longrightarrow B$ is automatically continuous.

The below result follows from Theorem 2.7 and Theorem 2.2.

Corollary 2.10. Every unital n-Jordan homomorphism φ from Banach algebra \mathcal{A} onto a semisimple Banach algebra \mathcal{B} is automatically continuous.

Since every C^* -algebra is semisimple, we get the next result.

Corollary 2.11. Every unital n-Jordan homomorphism φ from Banach algebra \mathcal{A} onto a C^* -algebra \mathcal{B} is automatically continuous.

In general, the kernel of an n-Jordan homomorphism may not be an ideal. A counter-example has been given in [15].

For n-Jordan homomorphism, we have the following.

Corollary 2.12. Let φ be a unital n-Jordan homomorphism from Banach algebra \mathcal{A} into a semiprime Banach algebra \mathcal{B} . Then $\ker \varphi$ is an ideal if either φ is surjective, or \mathcal{B} is commutative.

Proof. The result follows from Theorem 2.7 and Corollary 6.3.8 of [12], if φ is surjective, and it follows from Proposition 2 of [15], if \mathcal{B} is commutative.

3. Almost n-Jordan homomorphisms

Let \mathcal{A} and \mathcal{B} be Banach algebras and $\varphi : \mathcal{A} \longrightarrow \mathcal{B}$ be a linear map. Then φ is called almost *n*-multiplicative, if there exists $\xi > 0$ such that for all $a_1, a_2, \ldots, a_n \in \mathcal{A}$,

$$\|\varphi(a_1a_2\cdots a_n) - \varphi(a_1)\cdots \varphi(a_n)\| \le \xi \|a_1\|\|a_2\|\cdots\|a_n\|.$$

Moreover, φ is said to be almost n-Jordan homomorphism if there exists $\delta>0$ such that

$$\|\varphi(a^n) - \varphi(a)^n\| \le \delta \|a\|^n, \quad (a \in \mathcal{A}).$$

It is obvious that if φ is almost *n*-multiplicative, then it is almost *n*-Jordan, but in general the converse is not true.

In [11], Jarosz proved the following theorem.

Theorem 3.1. Let $\varphi : \mathcal{A} \longrightarrow \mathbb{C}$ be an almost multiplicative linear functional. Then φ is continuous and $\|\varphi\| \leq 1 + \xi$.

The next result, which is a generalization of Jarosz's theorem, obtained in [1].

Theorem 3.2. Let $\varphi : \mathcal{A} \longrightarrow \mathcal{B}$ be an almost multiplicative linear map. If \mathcal{B} is semisimple, then φ is continuous.

In the next result we prove that Theorem 3.1 is valid for almost n-Jordan homomorphism.

Theorem 3.3. Let φ be an almost n-Jordan homomorphism from Banach algebra \mathcal{A} into \mathbb{C} . Then $\|\varphi\| \leq 1 + \delta$.

Proof. By definition we have

$$\|\varphi\| = \sup\{|\varphi(a)| : a \in \mathcal{A}, \|a\| = 1\}.$$

Thus, for $0 < \lambda < \sqrt{\delta}$, there exists $a \in \mathcal{A}$ with ||a|| = 1 and $||\varphi|| - \lambda < |\varphi(a)|$. So

$$|\varphi(a)|^n - |\varphi(a^n)| = |\varphi(a)^n| - |\varphi(a^n)| \le |\varphi(a^n) - \varphi(a)^n| \le \delta.$$

Hence

$$|\varphi(a)|^n \le |\varphi(a^n)| + \delta.$$

Since ||a|| = 1, we have

$$(\|\varphi\| - \lambda)^n < |\varphi(a)|^n \le |\varphi(a^n)| + \delta \le \|\varphi\| + \delta.$$

Letting $\lambda \longrightarrow 0$, we get $\|\varphi\|^n - \|\varphi\| \le \delta$. Now let $\|\varphi\| > 1 + \delta$. Then

$$(1+\delta)^{n-1} < \|\varphi\|^{n-1} \le 1 + \frac{\delta}{\|\varphi\|} \le 1 + \delta,$$

which is a contradiction. So, $\|\varphi\| \le 1 + \delta$.

Theorem 3.4. Let A and B be two Banach algebras and $\varphi : A \longrightarrow B$ be an almost n-Jordan homomorphism. If B is commutative and semisimple, then φ is continuous.

Proof. Let $\psi: \mathcal{B} \longrightarrow \mathbb{C}$ be an *n*-Jordan homomorphism. Then ψ is bounded by Theorem 3.3, so we get

$$|\psi \circ \varphi(a^n) - (\psi \circ \varphi(a))^n| \le ||\psi|| ||\varphi(a^n) - \varphi(a)^n|| \le (1+\delta) |\delta||a||^n.$$

Therefore $\psi \circ \varphi$ is an almost *n*-Jordan homomorphism, and hence it is continuous by above theorem. Suppose $(a_m) \subseteq \mathcal{A}$ is a sequence converging to zero and $\varphi(a_m)$ converges to $b \in \mathcal{B}$. Then

$$\psi(b) = \psi(\lim_{m} \varphi(a_m)) = \lim_{m} \psi \circ \varphi(a_m) = 0,$$

thus, $\psi(b) = 0$. Since \mathcal{B} is semisimple, it follows that b = 0. Hence from the close graph Theorem, φ is continuous.

References

- E. Ansari-Piri and N. Eghbali, A note on multiplicative and almost multiplicative linear maps, Honam Math. J. 27 (2005), no. 4, 641–647.
- [2] F. F. Bonsall and J. Duncan, Complete Normed Algebra, Springer-Verlag, New York, 1973.
- [3] J. Bračič and M. S. Moslehian, On automatic continuity of 3-homomorphisms on Banach algebras, Bull. Malays. Math. Sci. Soc. 30 (2007), no. 2, 195–200.
- [4] P. Civin and B. Yood, Lie and Jordan structures in Banach algebras, Pacific J. Math. 15 (1965), no. 3, 775–797.
- [5] L. Dalla, S. Giotopoulos, and N. Katseli, The socle and finite-dimensionality of a semiprime Banach algebras, Studia Math. 92 (1989), no. 2, 201–204.
- [6] D. D. Draghia, Semisimplicity of some semiprime Banach algebras, Extra. Math. 10 (1995), no. 2, 189–193.
- [7] M. Eshaghi Gordji, n-Jordan homomorphisms, Bull. Aust. Math. Soc. 80 (2009), no. 1, 159–164.
- [8] M. Eshaghi Gordji, A. Jabbari, and E. Karapinar, Automatic continuity of surjective n-homomorphisms on Banach algebras, Bull. Iranian Math. Soc. 41 (2015), no. 5, 1207– 1211
- [9] Sh. Hejazian, M. Mirzavaziri, and M. S. Moslehian, n-homomorphisms, Bull. Iranian Math. Soc. 31 (2005), no. 1, 13–23.
- [10] T. G. Honari and H. Shayanpour, Automatic continuity of n-homomorphisms between Banach algebras, Q. Math. 33 (2010), no. 2, 189–196.
- [11] K. Jarosz, Perturbation of Banach Algebras, Lecture Notes in Mathematics, Springerverlag, 1985.
- [12] T. Palmer, Banach algebras and the general theory of *-algebras. Vol I, Cambridge: Univ Press, 1994.
- [13] E. Park and J. Trout, On the nonexistence of nontrivial involutive n-homomorphisms of C*-algebras, Trans. Amer. Math. Soc. 361 (2009), no. 4, 1949–1961.
- [14] W. Zelazko, A characterization of multiplicative linear functionals in complex Banach algebras, Studia Math. 30 (1968), 83–85.
- [15] A. Zivari-Kazempour, A characterization of Jordan homomorphism on Banach algebras, Chin. J. Math. 2014 (2014), Art. ID 698621, 3 pages.
- [16] ______, A characterization of 3-Jordan homomorphism on Banach algebras, Bull. Aust. Math. Soc. 93 (2016), no. 2, 301–306.

Abbas Zivari-Kazempour

DEPARTMENT OF MATHEMATICS

Ayatollah Borujerdi University

BORUJERD, IRAN

Email address: zivari@abru.ac.ir, zivari6526@gmail.com