• 제목/요약/키워드: semidefinite relaxation

검색결과 19건 처리시간 0.024초

반복 선형행렬부등식을 이용한 축소차수 제어기 설계 (Reduced-order controller design via an iterative LMI method)

  • 김석주;권순만;이종무;김춘경;천종민
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 D
    • /
    • pp.2242-2244
    • /
    • 2004
  • This paper deals with the design of a reduced-order stabilizing controller for the linear system. The coupled lineal matrix inequality (LMI) problem subject to a rank condition is solved by a sequential semidefinite programming (SDP) approach. The nonconvex rank constraint is incorporated into a strictly linear penalty function, and the computation of the gradient and Hessian function for the Newton method is not required. The penalty factor and related term are updated iteratively. Therefore the overall procedure leads to a successive LMI relaxation method. Extensive numerical experiments illustrate the proposed algorithm.

  • PDF

Greedy Learning of Sparse Eigenfaces for Face Recognition and Tracking

  • Kim, Minyoung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제14권3호
    • /
    • pp.162-170
    • /
    • 2014
  • Appearance-based subspace models such as eigenfaces have been widely recognized as one of the most successful approaches to face recognition and tracking. The success of eigenfaces mainly has its origins in the benefits offered by principal component analysis (PCA), the representational power of the underlying generative process for high-dimensional noisy facial image data. The sparse extension of PCA (SPCA) has recently received significant attention in the research community. SPCA functions by imposing sparseness constraints on the eigenvectors, a technique that has been shown to yield more robust solutions in many applications. However, when SPCA is applied to facial images, the time and space complexity of PCA learning becomes a critical issue (e.g., real-time tracking). In this paper, we propose a very fast and scalable greedy forward selection algorithm for SPCA. Unlike a recent semidefinite program-relaxation method that suffers from complex optimization, our approach can process several thousands of data dimensions in reasonable time with little accuracy loss. The effectiveness of our proposed method was demonstrated on real-world face recognition and tracking datasets.

Achievable Rate Region Bounds and Resource Allocation for Wireless Powered Two Way Relay Networks

  • Di, Xiaofei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권2호
    • /
    • pp.565-581
    • /
    • 2019
  • This paper investigates the wireless powered two way relay network (WPTWRN), where two single-antenna users and one single-antenna relay firstly harvest energy from signals emitted by a multi-antenna power beacon (PB) and then two users exchange information with the help of the relay by using their harvested energies. In order to improve the energy transfer efficiency, energy beamforming at the PB is deployed. For such a network, to explore the performance limit of the presented WPTWRN, an optimization problem is formulated to obtain the achievable rate region bounds by jointly optimizing the time allocation and energy beamforming design. As the optimization problem is non-convex, it is first transformed to be a convex problem by using variable substitutions and semidefinite relaxation (SDR) and then solve it efficiently. It is proved that the proposed method achieves the global optimum. Simulation results show that the achievable rate region of the presented WPTWRN architecture outperforms that of wireless powered one way relay network architecture. Results also show that the relay location has significant impact on achievable rate region of the WPTWRN.

A Physical-layer Security Scheme Based on Cross-layer Cooperation in Dense Heterogeneous Networks

  • Zhang, Bo;Huang, Kai-zhi;Chen, Ya-jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권6호
    • /
    • pp.2595-2618
    • /
    • 2018
  • In this paper, we investigate secure communication with the presence of multiple eavesdroppers (Eves) in a two-tier downlink dense heterogeneous network, wherein there is a macrocell base station (MBS) and multiple femtocell base stations (FBSs). Each base station (BS) has multiple users. And Eves attempt to wiretap a macrocell user (MU). To keep Eves ignorant of the confidential message, we propose a physical-layer security scheme based on cross-layer cooperation to exploit interference in the considered network. Under the constraints on the quality of service (QoS) of other legitimate users and transmit power, the secrecy rate of system can be maximized through jointly optimizing the beamforming vectors of MBS and cooperative FBSs. We explore the problem of maximizing secrecy rate in both non-colluding and colluding Eves scenarios, respectively. Firstly, in non-colluding Eves scenario, we approximate the original non-convex problem into a few semi-definite programs (SDPs) by employing the semi-definite relaxation (SDR) technique and conservative convex approximation under perfect channel state information (CSI) case. Furthermore, we extend the frame to imperfect CSI case and use the Lagrangian dual theory to cope with uncertain constraints on CSI. Secondly, in colluding Eves scenario, we transform the original problem into a two-tier optimization problem equivalently. Among them, the outer layer problem is a single variable optimization problem and can be solved by one-dimensional linear search. While the inner-layer optimization problem is transformed into a convex SDP problem with SDR technique and Charnes-Cooper transformation. In the perfect CSI case of both non-colluding and colluding Eves scenarios, we prove that the relaxation of SDR is tight and analyze the complexity of proposed algorithms. Finally, simulation results validate the effectiveness and robustness of proposed scheme.

위상 조정 Convex 최적화 알고리즘을 이용한 완전 디지털 능동배열레이다의 광역빔 설계 (Wide Beam Design of a Fully Digital Active Array Radar Using Convex Optimization with Only Phase Control)

  • 양우용;이현석;양성준
    • 한국전자파학회논문지
    • /
    • 제30권6호
    • /
    • pp.479-486
    • /
    • 2019
  • 레이다는 한정된 시간내에 효과적인 임무수행을 위해 광역빔을 이용한다. 본 논문에서는 완전 디지털 능동배열레이다의 광역빔 설계에 적용 가능한 위상조정 convex 최적화 알고리즘을 제안한다. 먼저 SDR(SemiDefinite Relaxation) 개념을 적용하여 제한 조건을 완화시켜 non-convex 집합을 convex 집합으로 전환한다. 그 후 배열소자의 크기를 어느 정도 고정하고 위상만을 조정하도록 제한조건을 적용하고, 고유값 분해를 통해 획득한 고유값의 합을 최소화하도록 최적화 과정을 수행하였다. 기존 유전알고리즘 적용결과와의 비교를 통해 제안된 알고리즘이 소자의 위상값만을 이용한 광역빔 설계에 효과적임을 확인하였고, 완전 디지털 능동배열레이다를 이용하는 차기호위함/구축함에 적용할 수 있을 것으로 기대된다.

Secure Beamforming with Artificial Noise for Two-way Relay Networks

  • Li, Dandan;Xiong, Ke;Du, Guanyao;Qiu, Zhengding
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권6호
    • /
    • pp.1418-1432
    • /
    • 2013
  • This paper studies the problem of secure information exchange between two sources via multiple relays in the presence of an eavesdropper. To this end, we propose a relay beamforming scheme, i.e., relay beamforming with artificial noise (RBwA), where the relay beamforming vector and the artificial noise vector are jointly designed to maintain the received signal-to-interference-ratio (SINR) at the two sources over a predefined Quality of Service (QoS) threshold while limiting the received SINR at the eavesdropper under a predefined secure threshold. For comparison, the relay beamforming without artificial noise (RBoA) is also considered. We formulate two optimization problems for the two schemes, where our goal is to seek the optimal beamforming vector to minimize the total power consumed by relay nodes such that the secrecy of the information exchange between the two sources can be protected. Since both optimization problems are nonconvex, we solve them by semidefinite program (SDP) relaxation theory. Simulation results show that, via beamforming design, physical layer secrecy of two-way relay networks can be greatly improved and our proposed RBwA outperforms the RBoA in terms of both low power consumption and low infeasibility rate.

실내 무선 통신 환경에서 심볼 간 간섭 최소화를 위해 가중치를 적용한 시역전 필터 (Weighted TR prefilter for Minimum ISI in indoor wireless Communication System)

  • 윤미선;이충용
    • 대한전자공학회논문지TC
    • /
    • 제49권8호
    • /
    • pp.52-57
    • /
    • 2012
  • 실내 무선 통신 환경에 적합한 심볼 간섭을 최소화 하는 가중치를 적용한 시역전 필터를 제안한다. 실내 무선 통신 환경에서는 delay spread로 인한 심볼 간 간섭으로 인해 심각한 성능열화가 초래되며 이를 해결하기 위해 현존하는 기법들은 복잡한 수신기법을 통해 성능을 개선하였다. 본 논문에서는 수신기의 복잡한 구조를 단순하게 하면서도 간섭을 줄이는 시역전 필터의 계수에 가중치를 부여하여 심볼 간 간섭을 최소화하면서도 수신신호의 peak 파워를 일정 수준이상으로 유지하는 가중치 시역전 필터를 제안한다. 이를 통해 잡음 및 간섭에 강인하면서도 심볼 간 간섭을 줄이며 간단한 수신기를 구성할 수 있는 이점을 얻는다. 실험결과에서는 가중치 시역전 필터가 기존 시역전 필터에 비해 성능이 개선되었음을 볼 수 있다.

다중 사용자 실내 통신 시스템에서의 데이터 고속 전송 및 심볼 간 간섭 최소화를 위한 이중 시역전 전처리 필터 (Double TR Prefilter for High Data Rate and Minimum ISI in Multi-user Indoor Communication System)

  • 윤미선;이충용
    • 대한전자공학회논문지TC
    • /
    • 제49권8호
    • /
    • pp.58-64
    • /
    • 2012
  • 다중 사용자가 존재하는 실내 통신 시스템에서 데이터 고속 전송이 가능하도록 간섭을 최소화 시키는 이중 시역전 전처리 필터를 제안한다. 기존 시역전 필터는 간섭을 완벽히 제거하지 못해서 심볼의 전송 간격이 좁아지게 되는 경우 성능열화가 심각하게 나타나게 된다. 그러나 제안하는 기법은 간섭을 최소화 하는 것을 목표로 하였기 때문에 추가적인 필터 설계를 통해 성능 열화 없이 고속 데이터 전송을 실현하고 송신기가 수신기의 복잡도 부담을 덜어주는 이점이 있다. 실험 결과에서는 데이터 전송률이 높아질수록 제안하는 기법의 성능이 향상되는 것을 볼 수 있다.

Probabilistic Constrained Approach for Distributed Robust Beamforming Design in Cognitive Two-way Relay Networks

  • Chen, Xueyan;Guo, Li;Dong, Chao;Lin, Jiaru;Li, Xingwang;Cavalcante, Charles Casimiro
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권1호
    • /
    • pp.21-40
    • /
    • 2018
  • In this paper, we propose the distributed robust beamforming design scheme in cognitive two-way amplify-and-forward (AF) relay networks with imperfect channel state information (CSI). Assuming the CSI errors follow a complex Gaussian distribution, the objective of this paper is to design the robust beamformer which minimizes the total transmit power of the collaborative relays. This design will guarantee the outage probability of signal-to-interference-plus-noise ratio (SINR) beyond a target level at each secondary user (SU), and satisfies the outage probability of interference generated on the primary user (PU) above the predetermined maximum tolerable interference power. Due to the multiple CSI uncertainties in the two-way transmission, the probabilistic constrained optimization problem is intractable and difficult to obtain a closed-form solution. To deal with this, we reformulate the problem to the standard form through a series of matrix transformations. We then accomplish the problem by using the probabilistic approach based on two sorts of Bernstein-type inequalities and the worst-case approach based on S-Procedure. The simulation results indicate that the robust beamforming designs based on the probabilistic method and the worst-case method are both robust to the CSI errors. Meanwhile, the probabilistic method can provide higher feasibility rate and consumes less power.