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Abstract

Appearance-based subspace models such as eigenfaces have been widely recognized as
one of the most successful approaches to face recognition and tracking. The success of
eigenfaces mainly has its origins in the benefits offered by principal component analysis
(PCA), the representational power of the underlying generative process for high-dimensional
noisy facial image data. The sparse extension of PCA (SPCA) has recently received significant
attention in the research community. SPCA functions by imposing sparseness constraints
on the eigenvectors, a technique that has been shown to yield more robust solutions in
many applications. However, when SPCA is applied to facial images, the time and space
complexity of PCA learning becomes a critical issue (e.g., real-time tracking). In this paper,
we propose a very fast and scalable greedy forward selection algorithm for SPCA. Unlike a
recent semidefinite program-relaxation method that suffers from complex optimization, our
approach can process several thousands of data dimensions in reasonable time with little
accuracy loss. The effectiveness of our proposed method was demonstrated on real-world face
recognition and tracking datasets.

Keywords: Sparse learning, Principal component analysis, Face recognition/tracking

Received: Jun. 17, 2014
Revised : Sep. 19, 2014
Accepted: Sep. 20, 2014

Correspondence to: Minyoung Kim
(mikim@seoultech.ac.kr)
©The Korean Institute of Intelligent Systems

cc©This is an Open Access article dis-
tributed under the terms of the Creative
Commons Attribution Non-Commercial Li-
cense (http://creativecommons.org/licenses/
by-nc/3.0/) which permits unrestricted non-
commercial use, distribution, and reproduc-
tion in any medium, provided the original
work is properly cited.

1. Introduction

Principal component analysis (PCA) is one of the most popular techniques for high-
dimensional data analysis and dimensionality reduction [1–3]. The PCA formulation can be
obtained from factor analysis when a small set of projection vectors is sought to preserve
the variation in data as much as possible. This effectively reduces the problem to that of an
eigenvalue/vector for the data covariance matrix (see Section 2.1 for details).

One of the most successful applications of PCA is the use of eigenfaces in computer vision
and neuroscience, an appearance-based subspace model for facial image data [4–7]. It is
widely believed that although facial images are high-dimensional, they lie on a low-dimensional
manifold or subspace. In addition, the eigenfaces, referring to the PCA eigenvectors for facial
image data, are likely to capture salient features from data (e.g., inter-subject appearance
differences) while suppressing noise in images (e.g., illumination effects or occlusion). This
results in superior performance for face recognition [6, 7], as well as in face tracking tasks [8],
in which case the eigenface model is updated incrementally in accordance with changes in the
appearance of the target (e.g., pose or illumination changes).

Despite the successful use of PCA in many data analysis problems, one known drawback
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of PCA is that nearly all data dimensions can potentially con-
tribute to principal components, whereas many real-world ap-
plications including facial images are of a sparse nature (i.e.,
only a few dimensions are actually effective). To address this
problem, the sparse extension of PCA (SPCA) was recently
developed, and it has since received significant attention in the
research community [9–11]. SPCA imposes sparseness con-
straints on the eigenvectors, which has been shown to yield
more robust solutions in many applications.

However, most existing SPCA approaches are considerably
slow, difficult to optimize, and do not scale gracefully with
data dimension. In [10], for instance, an L1- and L2-penalized
regression-like optimization was formulated for SPCA learning
that requires repetitive solving of the iterative optimization
problem until it converges. In [11], the original problem is
relaxed to a semidefinite program (SDP) that can be solved
by off-the-shelf SDP solvers; however, most SDP solvers are
relatively slow, and are not even capable of processing several
hundreds of data dimensions.

The facial image data are high-dimensional, and the related
tasks (e.g., real-time tracking) require near real-time, fast learn-
ing of PCA loadings. Application of SPCA to facial images
requires the time and space complexity to be addressed. In this
paper, we propose a very fast and scalable greedy forward selec-
tion algorithm for SPCA. Unlike existing methods that suffer
from complex optimization, our approach is able to process
several thousands of data dimensions in reasonable time with
little accuracy loss.

Our approach involves maintaining an active list (initially
empty) of non-zero eigenvector entries, and the use of a greedy
fashion to select a new non-zero entry that yields the maximal
improvement of the PCA objective function at each stage. Once
a new entry is chosen, the eigenvector is refined by solving the
eigenvalue/vector problem on the current active list. Note that
as the active list size is usually small (typically no more than
several hundreds), the refinement (finding an eigenvector) can
be performed very fast.

By using facial image data, it is demonstrated that the learned
sparse eigenfaces have non-zero loadings that correspond to the
most important feature points of the face (e.g., eyes/eyebrows,
nose). As these are regarded as the most salient features for face
recognition, our sparse eigenface learning algorithm has the
ability to discover a few of these most discriminative features
very effectively. Our experiment also demonstrates a significant
improvement in face recognition accuracy compared to standard
(full) PCA.

In addition to face recognition, the proposed SPCA learning
algorithm was also applied to the visual face tracking problem.
One crucial issue in tracking is to establish how to update the tar-
get appearance model effectively and efficiently in accordance
with the actual target that usually changes over time. Similar to
increment visual tracking (IVT) [8], new eigenfaces are learnt
based on the accumulated historic tracked face images. It is
shown that, under regular conditions, our SPCA learning is only
five times slower than IVT’s sophisticated incremental SVD al-
gorithm for full PCA, that is capable of handling approximately
20–30 frames per second in standard computing environments,
which is near real-time.

The paper is organized as follows: After briefly reviewing
PCA and related work in Section 2, the proposed greedy SPCA
learning algorithm is described in Section 3 together with its
application to face tracking. The effectiveness of the proposed
method is demonstrated on selected real-world face recognition
and tracking datasets in Section 4. The conclusion appears in
Section 5.

2. Background and Previous Work

In this section, PCA and the formulation of its sparse extension
are briefly reviewed. This is followed by a description of the
application of the recent SDP relaxation approach [11] to the
SPCA problem.

2.1 Principal Component Analysis

PCA was initially proposed by Pearson in 1901 [1], while
a more general procedure was subsequently developed [2].
PCA is based on finding a small set of projection vectors
that preserves the variation in data as much as possible. Let
X = [x1, . . . ,xn] ∈ <p×n be a data matrix comprised of n data
samples of dimension p in the columns and let µ = 1

n

∑n
i=1 xi

be the sample mean of the data.
PCA then aims to find a subspace B = [b1, . . . ,bq] with q

basis vectors bj ∈ Rp that best reconstructs the data covariance
Σ = 1

n

∑n
i=1(xi − µ)(xi − µ)>). The typical assumption

is that q � p (i.e., low-dimensional subspace). This can be
formulated as follows.

min
B,Λ

∥∥∥Σ− q∑
j=1

λjbjb
>
j

∥∥∥2
F
, s.t. ||bj ||2 = 1, λj ≥ 0, ∀j, (1)

where || · ||F is the Frobenius norm, and Λ is a diagonal matrix
with entries {λj} indicating the impact/weight of j-th basis in
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reconstruction. One can further impose the usual orthogonal
constraints of b>i bj = 0 for all i 6= j.

The optimization (1) can be performed in a recursive manner:
1) solving the rank-one approximation problem (2) to have
(λ,b),

min
b,λ

∥∥∥Σ− λbb>
∥∥∥2
F
, s.t. ||b||2 = 1, λ ≥ 0, (2)

and 2) compute the residual and set it as a new covariance, Σ←
Σ − λbb>. This procedure is repeated until q eigenvectors
are obtained. Notice that the optimal solution b of (2) is the
eigenvector of Σ corresponding to the largest eigenvalue. This
can easily be shown by: minimizing (2) over λ first yields
λ = b>Σb as an optimal solution, and the resulting problem
becomes the famous Rayleigh quotient problem (3) that has the
largest eigenvector as a solution.

max
b

b>Σb, s.t. ||b||2 = 1. (3)

2.2 Sparse PCA

SPCA additionally imposes the sparseness constraints on the
eigenvectors. Formally, letting Card(u) be the number of non-
zero entries of vector u, the SPCA can be formulated as follows.

max
b

b>Σb, s.t. ||b||2 = 1, Card(b) ≤ R, (4)

where R is a sparsity level constant assumed to be known a
priori. The sparse eigenvectors obtained from the sparseness
constraints can be beneficial in several aspects, for instance,
many real-world data have sparse relationships with underlying
factors (e.g., gene interaction in biological models), and the
resulting sparse basis vectors are more robust to noise/outliers
by focusing on a few of the most informative dimensions.

However, solving (4) incurs additional difficulty due to the
non-convex, non-differentiable cardinality constraints. Several
approximate approaches have recently been proposed. The two
most popular methods are: 1) iteratively optimizing the L1-
and L2-regularized regression problem (also referred to as the
elastic-net problem) [10], and 2) relaxing the original problem
into a tractable SDP (hence, a convex problem) [11]. Here, we
briefly summarize the latter approach.

In [11], a new semidefinite rank-one matrix variable X =

bb> is introduced. Removing the rank-one constraint and
considering that it is possible to further relax ||b||2 = 1 as
the L1-norm (the sum of the absolute entries of X) constraint

||X||1 ≤ R, a relaxed problem can be formulated:

max
X�0

Trace(ΣX), s.t. Trace(X) = 1, ||X||1 ≤ R. (5)

This is an instance of an SDP [12]. Any off-the-shelf SDP
solvers (e.g., [13, 14]) can be utilized; however, most of the
current packages simply fail to run when the data dimension
p is large, as is the case with the facial image data. In the
next section, our fast and scalable SPCA learning algorithm is
introduced.

3. Greedy Learning of Sparse Eigenfaces

The original SPCA problem (4) is directly attempted. The
approach that is followed is to add a non-zero entry to b one
at a time in a greedy fashion. In particular, we maintain an
active list I of non-zero entry indices in b. As the objective
for the current b is b>Σb, the gradient direction that yields
maximal improvement in the objective is Σb. If only one
dimension is selected to turn on from zero to non-zero (i.e., the
steepest coordinate ascent), it should be the largest entry of the
gradient vector, namely j∗ = argmaxj /∈I(Σb)j , whereupon
j∗ is added to I . Furthermore, the current non-zero entries of
b can be refined to yield a more desirable objective; the best
solution for the current I would be to set bI (the non-zero parts
of b) to the largest eigenvector of ΣI,I (the sub-matrix of Σ

by using the row/column indices in I). Note that this can be
obtained very fast compared to finding the eigenvector of Σ

since I usually has a small cardinality (no greater than R). This
procedure is repeated while |I| ≤ R. The overall algorithm is
summarized below.

1) (Initialization) Start with b = 0 and I = φ. Then, find
the j such that b = ej maximizes the objective where ej

has zero entries except when the j-th entry is equal to 1.
As the objective is e>j Σej = Σj,j , j is the index of the
largest diagonal entry of Σ. Set I = {j}.

2) (Steepest coordinate ascent) For the current b and I ,
find j∗ /∈ I such that the coordinate ascent gradient
(Σb)j is maximized. That is, j∗ = argmaxj /∈I(Σb)j .
Then, set I = I ∪ {j∗}.

3) (Eigenvector refinement) Compute bI as the largest
eigenvector of ΣI,I , the sub-matrix of Σ by taking row/column
indices in I . Copy bI into the indices I in b and set all
the other entries of b to 0.

4) (Cardinality check) Go to step 2 if |I| < R and the
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objective b>Σb is improved from the previous stage.
Otherwise, stop.

Note that the algorithm repeats at most R stages, and that
each stage only requires a simple maximum number search over
(p−|I|) entries, and finding the largest eigenvector of the small
(|I| × |I|) matrix. This results in highly accelerated SPCA
learning. It is worth noting that a similar forward selection
type SPCA algorithm has been proposed [15]. However, new
entries are selected by solving (p − |I|) different eigenvalue
problems, which may require a prohibitively long time for high-
dimensional facial image data.

3.1 Face Tracking with Adaptive Sparse Eigenfaces

We also consider applying the sparse eigenface model to the
visual face tracking problem. Tracking is an online estimation
problem where given the sequence of image frames up to the
current time t, denoted by F0, . . . , Ft, the location (and also
the size and the in-plane rotation angle of the tight bounding
box around face) of the face image is estimated in Ft. One way
to formalize the problem is to use the online temporal filtering
formulation [16], that involves the estimation of P (ut|Ft) at
each time t = 1, 2, . . . . Here ut is the tracking state specifying
the face bounding box with respect to the current frame Ft.
Typically, ut = [cx, cy, ρ, φ]

> where the first two values are
the center position, ρ is the relative size of the bounding box (1
for the reference patch size), and φ is the rotation angle. It is
straightforward to extract the face image ht from ut and Ft by
a simple affine warping ht = ω(ut, Ft).

The underlying probabilistic model is the Markov chain
over tracking states in which each state is related to an emis-
sion model that measures the goodness of track (the extent to
which ht = ω(ut, Ft) resembles a face). A 1st-order Gaussian
random-walk model for state dynamics, namely P (ut|ut−1) =
N (ut;ut−1, V0), with some covariance V0 is common. The
crucial part is the emission model, for which a generic energy
model,

P (Ft|ut) ∝ exp(−E(ht; θ)/σ
2
0), where ht = ω(ut, Ft),

(6)
can be considered, where E(ht; θ) is the energy function that
has a lower (higher) value when ht more (less) closely resem-
bles the target face model θ. The online filtering can then be
written as the following recursion.

P (ut|F0...t)

∝ P (Ft|ut) ·
∫
P (ut|ut−1) · P (ut−1|F0...t−1) dut−1,

(7)
which can be typically solved by using a sampling-based method
(e.g., particle filtering [16]).

The eigenface model can be employed as a target face model.
As it is possible for the appearance of a face to change over time
(mainly due to changes in the facial pose/expression, illumi-
nation, or distance from the camera), a more sensible strategy
would be to adaptively change the target model. In [8], the
IVT builds an up-to-date eigenface model each time using the
historically tracked facial image data. This can be performed
considerably efficiently by using the sophisticated incremental
SVD algorithm [17].

Although our proposed algorithm is not similarly incremental,
it is possible to plug the proposed greedy SPCA learning algo-
rithm directly into the adaptive emission model. More formally,
to obtain the current data mean and covariance (µ,Σ), once a
new tracked result ht is available, the mean and covariance are
updated by using the following equations

µnew =
t

t+ 1
µ+

1

t+ 1
ht, (8)

Σnew =
t

t+ 1
Σ +

1

(t+ 1)2
(ht − µ)(ht − µ)>. (9)

Using the newly updated covariance, the sparse eigenvectors
are learnt in a greedy fashion as before. The emission model
can optionally be scheduled to be updated in a stepwise manner
(e.g., update every third frames). There is a trade-off regarding
the choice of the update frequency: frequent updates would
enable the model to adapt to appearance changes instantly, but
at the cost of a delay in the tracking time, and vice versa. In
practice, an update frequency of 3–5 steps is known to work
well without causing a significant delay.

4. Experimental Results

The proposed SPCA learning algorithm was tested using face
recognition and tracking problems, but first, it was demon-
strated that our method is capable of efficiently and accurately
recovering the underlying sparse eigenvectors for a specified
synthetic dataset.
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Figure 1. Synthetic sparse extension of principal component analysis
(PCA) basis recovery. (a) True basis matrix, (b) estimated basis by
standard PCA, (c) semidefinite program relaxation, (d) our greedy
method.

4.1 Synthetic Data

A synthetic experimental setup was devised to demonstrate
that our SPCA learning algorithm is much faster than the SDP
relaxation method and that it is able to recover the underlying
sparse subspace basis vectors accurately. Using the probabilistic
extension of PCA [18] (referred to as PPCA) as motivation,
observable data x ∈ Rp was generated using an underlying
latent low-dimensional vector z ∈ Rq with q � p, based on the
linear Gaussian-noise model, namely

x = Az + ε, (10)

where A is a (p× q) matrix that relates z to x, and ε represents
independent Gaussian noise.

Specifically, we set p = 10, q = 3, and defined A to have
sparse column basis vectors with only two non-zero entries
(Figure1a). The noise variance was chosen as 10−4. As in
the PPCA process, the latent vectors z were regarded as inde-
pendent and identical isotropic Gaussian random vectors with
zero mean and identity covariance. The number of samples that
was generated was n = 1, 000 samples x, which were used to
estimate the covariance matrix from the samples.

The recovered basis results are shown in Figure 1. Three
different methods were compared: the standard PCA that only
finds the directions of the highest variations without consid-
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Figure 2. Sample face images for face recognition. Each row contains
images of a single subject with appearance variations, mostly achieved
by using diverse illuminations.

ering the sparsity of the basis vectors (Figure 1b), the SPCA
obtained by SDP relaxation [11] (Figure 1c), and our greedy
method (Figure 1d). As shown, the full PCA recovers the right
subspace, but is not able to find the correct PCA loadings. On
the other hand, by exploiting the sparsity constraints of the
basis vectors, the SPCA methods were able to discover a nearly
perfect embedding matrix. Although not very significant, our
greedy method yielded a slightly smaller error, with the average
L2 difference between true and estimated eigenvectors being
3.94 × 10−6, compared to that of the SDP relaxation, which
was 7.24 × 10−5 (c.f., the full PCA has an L2 difference of
0.6578).

Finally, the actual running time was measured by using an
SDP relaxation method, for which purpose the MATLAB SDP
solver package [13, 14] was used. Our greedy SPCA learning
algorithm was implemented in MATLAB running on a 2.0 GHz
Dual Core machine, on which the SDP-based method required
3.85 s to run to completion, whereas our greedy method only
required 0.03 s, approximately 100 times faster than a difficult
SDP optimization. In the next section, it is shown that our
approach is scalable for even higher ambient data dimension,
which, in the case of image data, may number several thousands.

4.2 Face Recognition

This experiment was designed to test the degree of accuracy
with which the proposed sparse eigenface learning method is
able to recognize a face. The evaluation used the extended Yale-
B dataset [19], which comprises approximately 2,400 frontal
face images of a few dozen subjects. A 3-way classification was
considered for the three chosen subjects by randomly selecting
15 images for each subject. The selected images displayed
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(d) sparse-PCA (sparsity = 5%)

Figure 3. Learned eigenfaces for a full-principal component analysis
(PCA) and the proposed sparse-PCA with different sparsity levels. In
each sparse eigenvector image, the dominant gray pixels (of which
the brightness may vary across different images) indicate 0 values,
while darker/brighter pixels are interpreted as non-zero entries.

a variety of considerably diverse illuminations. Subsequent
to applying proper sub-sampling, (48 × 42) tightly cropped
face images were obtained (hence, the data dimension was
p = 2016). Selected sample images are shown in Figure 2.

For the face recognition and eigenface learning task, the
images were randomly divided into 10/5 training/test images
for each subject, and this procedure was repeated for 10 random
runs. The performance of our SPCA approach was contrasted
against the standard PCA (denoted by full-PCA) that simply
finds q largest eigenvectors. In contrast, as a PCA subspace
dimension, our approach considered q = 4 and q = 8. It should
be noted that the SDP relaxation based SPCA method simply
failed to run as a result of memory and computational issues
(Most of the current SDP solver packages (e.g., [13, 14]) are
unable to deal with p2 ≈ 4× 106 variables.). First, the learned
eigenvectors of the full-PCA and our sparse-PCA for q = 4

were visualized in Figure 3. In our sparse model, three different
sparsity levels r ∈ {5%, 10%, 20%} were considered, in which
the cardinality bound was specified as R = floor(r · p).

Table 1. Running time (in seconds) of the PCA subspace learning

Full-PCA
SPCA
(5%)

SPCA
(10%)

SPCA
(20%)

q = 4 0.18 1.02 2.41 7.52
q = 8 0.23 1.84 4.40 13.85

SPCA, sparse extension of principal component analysis.

Interestingly, the non-zero entries in the sparse eigenvectors
mostly correspond to the points around eyes/eyebrows and
nose, and it becomes more evident as the significance of the
sparsity level is increased from 20% to 5%. Those non-zero
points are typically considered the most important facial feature
points that are used as salient features for face recognition. Our
sparse eigenface learning algorithm thus discovers a few most
discriminative features very effectively.

The superior performance of the proposed sparse eigenface
learning of face recognition, was verified by conducting nearest
neighbor (NN) classification on the learned PCA subspaces.
Formally, the class label (i.e., subject ID) of the test data (image)
x∗ is determined as the class label of the training image xj

where j = argmini ||z∗ − zi||2. Here, the minimization is
performed across the entire range of training images, and z

indicates the subspace coordinates for x, namely z = B>(x−
µ) where B and µ are the learned eigenvectors in the column
and the training data mean, respectively. This minimization
procedure was repeated for 10 random training/test folds, and
the average test errors are reported in Figure 4.

First it can be seen that increasing the subspace dimension
improves the prediction accuracy of both the full-PCA and
sparse-PCA (for all sparsity levels). Interestingly, the NN clas-
sifiers on the SPCA subspaces are less sensitive to the chosen
subspace dimension. Considering that a model with smaller
dimensions is beneficial especially from a computational point
of view, our SPCA method would be more useful for real-time
applications and in situations with limited computing resources
(e.g., real-time face tracking on mobile devices). Furthermore,
for the same subspace dimension, the most aggressive 5%-level
SPCA model achieved the smallest test errors (even the 4-dim
sparse-PCA outperformed the 8-dim full-PCA).

The learning time was measured for the proposed greedy
SPCA learning, using a 2.0 GHz Dual Core machine. As Table 1
demonstrates, the running time is quite fast and comparable to
standard PCA methods especially for the most sparse model.
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Figure 4. Face recognition results. The nearest neighbor classifica-
tion was conducted on the full-principal component analysis (PCA)
subspaces and the sparse-PCA subspaces with different sparsity levels.
The average test errors are shown.

4.3 Face Tracking

Our SPCA learning algorithm was applied to the adaptive face
tracker (details described in Section 3.1). The update frequency
was specified as 3 (re-learn the sparse eigenfaces every third
frame). Video recordings were made of presentations by two
lecturers at the British Machine Vision Conference that was
held in 2009. Each video recording comprises a lecture with
a duration of length 1–2 min, taking up approximately 700
frames. The frame size is (352×288). The dataset is especially
challenging as a result of abrupt changes in pose (with many
widely varying poses: profile/up/down), size, and illumination
conditions caused by the dynamic motions of the lecturers.

Our approach contrasted with that of the IVT technique that
essentially adopts the full eigenfaces for the adaptive target
model. Selected tracker parameters (e.g., the initial tracking
state, image patch size, number of particles, and the scale σ0
in the emission model), were set identical for both sparse and
full PCA models to enable a fair comparison. In particular, the
image patch size for both datasets was chosen as (24×24), that
is, the data dimension was p = 576).

The initial-frame states were marked manually. The sub-
space dimension was set to q = 4 for both models, and the
number of samples in the particle filtering process was fixed
at 500. The sparsity level constraint for our model was set to

Table 2. Average tracking errors (in pixels) for the lecture video
datasets

Video IVT (full-PCA) Tracker w/SPCA
Lecturer-1 3.8743 2.7396
Lecturer-2 5.8970 3.1989

IVT, increment visual tracking; SPCA, sparse extension of principal
component analysis.

R = floor(p × 0.05), that is, only 5% of the entries in the
eigenvector were permitted to be non-zero. The tracking results
that were obtained with both models are shown in Figure 5.
The tracking states are superimposed in selected frames. Upon
visual inspection, it was clear that our sparse-PCA achieved
near successful tracking for both videos, whereas IVT often
failed to track the target.

The quantitative errors are also reported. This was carried out
by manually marking the center position of the face on every
fifth frame, following which the Euclidean distance between
the ground-truth position and the predicted center positions was
recorded. The tracking errors that were averaged over all video
frames are provided in Table 2. As shown, on average, the
errors generated using our approach were significantly smaller
for both videos than those obtained with IVT using full PCA
for both videos. This indicates that the sparse target model
would be a more robust tracker, attributed to its ability to keep
track of the most salient features, while capturing the largest
variation in the latest changes in the target. These enhanced
abilities are highlighted by the results obtained using this video
dataset that contains diverse target changes and noise levels.
Finally, the time required to update the target model update
time was also compared: 0.5 ms for IVT vs. 34.3 ms for the
proposed SPCA. The latter method would therefore be able to
handle approximately 20–30 frames per second, allowing for
near real-time tracking.

5. Conclusions

In this paper, we proposed a very fast and scalable greedy
forward selection algorithm for learning SPCA. Compared to
recent methods based on iterative regression estimation or SDP-
relaxation, our approach is able to process several thousands
of data dimensions gracefully in reasonable time with little
accuracy loss. The sparse eigenface model was tested using
facial image data and was shown to be computationally efficient
and capable of recovering the most salient and discriminative
features from data, leading to superior face recognizer and
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(a) Lecturer-1

(b) Lecturer-2

Figure 5. Tracking results for the British Machine Vision Conference 2009 lecture videos. Selected frames are highlighted where the yellow
(brighter) box indicates our sparse extension of principal component analysis (PCA), while the red (darker) box is the increment visual tracking
(full PCA). (a) Lecturer-1, and (b) Lecturer-2.

tracker performance that is robust to diverse forms of noise.
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