• 제목/요약/키워드: semiconductor quantum well

검색결과 101건 처리시간 0.023초

InGaN/GaN Micro-LED구조를 위한 그래핀 양자점 기반의 산화막 기판 특성 (Characteristics of Graphene Quantum Dot-Based Oxide Substrate for InGaN/GaN Micro-LED Structure)

  • 황성원
    • 반도체디스플레이기술학회지
    • /
    • 제20권3호
    • /
    • pp.167-171
    • /
    • 2021
  • The core-shell InGaN/GaN Multi Quantum Well-Nanowires (MQW-NWs) that were selectively grown on oxide templates with perfectly circular hole patterns were highly crystalline and were shaped as high-aspect-ratio pyramids with semi-polar facets, indicating hexagonal symmetry. The formation of the InGaN active layer was characterized at its various locations for two types of the substrates, one containing defect-free MQW-NWs with GQDs and the other containing MQW-NWs with defects by using HRTEM. The TEM of the defect-free NW showed a typical diode behavior, much larger than that of the NW with defects, resulting in stronger EL from the former device, which holds promise for the realization of high-performance nonpolar core-shell InGaN/GaN MQW-NW substrates. These results suggest that well-defined nonpolar InGaN/GaN MQW-NWs can be utilized for the realization of high-performance LEDs.

금속배선 칩 집적공정을 포함하는 질화물 반도체 LED 광소자 특성 연구 (A Study on the III-nitride Light Emitting Diode with the Chip Integration by Metal Interconnection)

  • 김근주;양정자
    • 반도체디스플레이기술학회지
    • /
    • 제3권3호
    • /
    • pp.31-35
    • /
    • 2004
  • A blue light emitting diode with 8 periods InGaN/GaN multi-quantum well structure grown by metal-organic chemical vapor deposition was fabricated with the inclusion of the metal-interconnection process in order to integrate the chips for light lamp. The quantum well structure provides the blue light photoluminescence peaked at 479.2 nm at room temperature. As decreasing the temperature to 20 K, the main peak was shifted to 469.7 nm and a minor peak at 441.9 nm appeared indicating the quantum dot formation in quantum wells. The current-voltage measurement for the fabricated LED chips shows that the metal-interconnection provides good current path with ohmic resistance of 41 $\Omega$.

  • PDF

Characteristics of $In_xGa_{1-x}N/GaN$ single quantum well grown by MBE

  • Kang, T.W.;Kim, C.O.;Chung, G.S;Eom, K.S.;Kim, H.J.;Won, S.H.;Park, S.H.;Yoon, G.S.;Lee, C. M.;Park, C.S.;Chi, C.S.;Lee, H.Y.;Yoon, J.S.
    • 한국진공학회지
    • /
    • 제7권s1호
    • /
    • pp.15-19
    • /
    • 1998
  • Structural and optical properties of $In_xGa_{1-X}N$ as well as $In_{0.1}Ga_{0.9}N$/GaN single quantum we11 (SQW) grown on sapphire (0001) substrate with an based GaN using rf-plasma assisted MBE have been investigated. The quality of the InXGal.,N fdm was improved as the growth temperature increased. In PL measurements at low temperatures, the band edge emission peaks of $In_xGa_{1-X}N$ was shifted to red region as an indium cell and substrate temperature increased. For $In_{0.1}Ga_{0.9}N$/GaN SQW, the optical emission energy has blue shift about 15meV in PL peak, due to the confined energy level in the well region. And, the FWHM of the $In_{0.1}Ga_{0.9}N$/GaN SQW was larger than that of the bulk Ino,la.9N films. The broadening of FWHM can be explained either as non-uniformity of Indium composition or the potential fluctuation in the well region. Photoconductivity (PC) decay measurement reveals that the optical transition lifetimes of the SQW measured gradually increased with temperatures.

  • PDF

Quantum Modeling of Nanoscale Symmetric Double-Gate InAlAs/InGaAs/InP HEMT

  • Verma, Neha;Gupta, Mridula;Gupta, R.S.;Jogi, Jyotika
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제13권4호
    • /
    • pp.342-354
    • /
    • 2013
  • The aim of this work is to investigate and study the quantum effects in the modeling of nanoscale symmetric double-gate InAlAs/InGaAs/InP HEMT (High Electron Mobility Transistor). In order to do so, the carrier concentration in InGaAs channel at gate lengths ($L_g$) 100 nm and 50 nm, are modelled by a density gradient model or quantum moments model. The simulated results obtained from the quantum moments model are compared with the available experimental results to show the accuracy and also with a semi-classical model to show the need for quantum modeling. Quantum modeling shows major variation in electron concentration profiles and affects the device characteristics. The two triangular quantum wells predicted by the semi-classical model seem to vanish in the quantum model as bulk inversion takes place. The quantum effects thus become essential to incorporate in nanoscale heterostructure device modeling.

MOCVD법에 의한 (Ga, Al) As/GaAs 변형된 영지우물 레이저 다이오드의 제작 (The Fabrication of (Ga, Al) As/GaAs Modified Multi-Quantum Well Laser Diode by MOCVD)

  • 김정진;강명구;김용;엄경숙;민석기;오환술
    • 전자공학회논문지A
    • /
    • 제29A권9호
    • /
    • pp.36-45
    • /
    • 1992
  • The Modified Multi-Quantum Well(MMQWAl) structures have been grown by Mental-Organic chemical Vapor Deposition(MOCVD) method and stripe type MMQW laser diodes have been investigated. In the case of GaAs/AlGaAs superlattice and quantum well growth by MOCVD, the periodicity, interface abruptess, Al compositional uniformity and layer thickness have been confirmed though the shallow angle lapping technique, double crystal x-ray diffractometry (DCXD) and photoluminescence (PL) measurement. stripe-type MMQW laser diodes have been fabricated using the process technology of photolithography, chemical etching, ohmic contact, back side removing and cleaving. As the result of the electrical and opticalmeasurement of these laser diodes, we have achieved the series resistance of $1[\Omega}~2{\Omega}$ by current-voltage measurements, the threshold current of 200-300mA by currnt-light measurements and the lasing wavelength of 8000-8400$\AA$ by lasing spectrum measurements.

  • PDF

양자우물 - 양자선 상전이 현상의 광양자테 레이저 (Quantum well - quantum wire phase transiton of photonic quantum ring laser)

  • Kwon, O-Dae;Noik Pan;Kim, Junyeon
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2003년도 제14회 정기총회 및 03년 동계학술발표회
    • /
    • pp.38-39
    • /
    • 2003
  • The GaAs semiconductor whispering gallery modes, produced in the peripheral Rayleigh band region of W/sub Rayleigh/ = (${\Phi}$/2)( 1-n/sub eff/n), exhibit novel properties of ultralow thresholds open to nano-ampere regime associated with photonic quantum ring (PQR) production (Fig 1 (a)). The PQR phenomena are associated with a photonic field-driven phase transition of quantum well(QW)-to-quantum wire (QWR) and hence the photonic (non-de Broglie) quantum corral effects, on the Rayleigh cavity confined carriers in dynamic steady state, occur as schematically shown in Fig 1. (omitted)

  • PDF

Coherent Absorption Spectroscopy with Supercontinuum for Semiconductor Quantum Well Structure

  • Byeon, Ciare C.;Oh, Myoung-Kyu;Kang, Hoon-Soo;Ko, Do-Kyeong;Lee, Jong-Min;Kim, Jong-Su;Choi, Hyoung-Gyu;Jeong, Mun-Seok;Kee, Chul-Sik
    • Journal of the Optical Society of Korea
    • /
    • 제11권3호
    • /
    • pp.138-141
    • /
    • 2007
  • We suggest that supercontinuum can be used for absorption spectroscopy to observe the exciton levels of a semiconductor nano-structure. Exciton absorption spectrum of a GaAs/AlGaAs quantum well was observed using supercontinuum generated by a microstructrured fiber pumped by a femtosecond (fs) pulsed laser. Significantly narrower peaks were observed in the absorption spectrum from 11 K up to room temperature than photoluminescence (PL) spectrum peaks. Because supercontinuum is coherent light and can readily provide high enough intensity, this method can provide a coherent ultra-broad band light source to identify exciton levels in semiconductors, and be applicable to coherent nonlinear spectroscopy such as electromagnetically induced transparency (EIT), lasing without inversion (LWI) and coherent photon control in semiconductor quantum structures.

Modeling of Degenerate Quantum Well Devices Including Pauli Exclusion Principle

  • 이은주
    • 대한전자공학회논문지SD
    • /
    • 제39권2호
    • /
    • pp.14-26
    • /
    • 2002
  • Pauli 배타 원리를 적용한 축퇴 상태의 양자 우물 소자 모델링을 제안하였다. 양자 우물에서의 다중 에너지 부준위 각각에 대한 Boltzmann 방정식의 collision 항들을 Pauli 배타 원리를 적용하여 전개하고 이들을 Schrodinger 방정식과 Poisson 방정식과 결합하여 비선형적인 시스템의 모델을 설정하였다. 시스템의 해를 직접적으로 구하기 위하여 유한 차분법과 Newton-Raphson method를 적용하여 양자 우물의 다중 에너지 부준위 각각에 대한 캐리어 분포 함수를 구하였다. Si MOSFET의 inversion 영역에 본 모델을 적용하여 전자 밀도의 증가에 따라 양자 우물의 에너지 분포 함수가 Boltzmann 분포 함수의 형태로부터 Fermi-Dirac 분포 함수의 형태로 변화함을 제시하고, 소자 크기가 감소할수록 소자 모델링에 있어서의 Pauli 배타 원리의 중요성과 함께 본 모델의 정당함과 그 해석 방법의 효율성을 보여주었다.

Improvement in LED structure for enhanced light-emission

  • Park, Seong-Ju
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 추계학술발표강연 및 논문개요집
    • /
    • pp.21-21
    • /
    • 2003
  • To increase the light-emission efficiency of LED, we increased the internal and external quantum efficiency by suppressing the defect formation in the quantum well and by increasing the light extraction efficiency in LED, respectively. First, the internal quantum efficiency was improved by investigating the effect of a low temperature (LT) grown p-GaN layer on the In$\sub$0.25/GaN/GaN MQW in green LED. The properties of p-GaN was optimized at a low growth temperature of 900oC. A green LED using the optimized LT p-type GaN clearly showed the elimination of blue-shift which is originated by the MQW damage due to the high temperature growth process. This result was attributed to the suppression of indium inter-diffusion in MQW layer as evidenced by XRD and HR-TEM analysis. Secondly, we improved the light-extraction efficiency of LED. In spite of high internal quantum efficiency of GaN-based LED, the external quantum efficiency is still low due to the total internal reflection of the light at the semiconductor-air interface. To improve the probability of escaping the photons outside from the LED structure, we fabricated nano-sized cavities on a p-GaN surface utilizing Pt self-assembled metal clusters as an etch mask. Electroluminescence measurement showed that the relative optical output power was increased up to 80% compared to that of LED without nano-sized cavities. I-V measurement also showed that the electrical performance was improved. The enhanced LED performance was attributed to the enhancement of light escaping probability and the decrease of resistance due to the increase in contact area.

  • PDF

Green and Blue Light Emitting InN/GaN Quantum Wells with Nanosize Structures Grown by Metalorganic Chemical Vapor Deposition

  • Kim, Je-Won;Lee, Kyu-Han
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제5권2호
    • /
    • pp.127-130
    • /
    • 2005
  • The structural and electrical properties of InN/GaN multiple quantum wells, which were grown by metalorganic chemical vapor deposition, were characterized by transmission electron microscopy and electroluminescence measurements. As the quantum well growth time was changed, the wavelength was varied from 451 to 531 nm. In the varied current conditions, the blue LED with the InN MQW structures did not have the wavelength shift. With this result, we can expect that the white LEDs with the InN MQW structures do not show the color temperature changes with the variations of applied currents.