• Title/Summary/Keyword: semiconductor device

Search Result 1,719, Processing Time 0.034 seconds

Blazed $GxL^{TM}$ Device for Laser Dream Theater at the Aichi Expo 2005

  • Ito, Yasuyuki;Saruta, Kunihiko;Kasai, Hiroto;Nishida, Masato;Yamaguchi, Masanari;Yamashita, Keitaro;Taguchi, Ayumu;Oniki, Kazunao;Tamada, Hitoshi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.556-559
    • /
    • 2006
  • We successfully developed a high performance and highly reliable blazed GxL device with a high optical efficiency and a high contrast ratio. The device demonstrated superior resistance against a high power laser, which is suitable for a large-area laser projector. We operated the world's largest laser projection screen using this device at the 2005 World Exposition in Aichi, Japan, problem free.

  • PDF

Experimental Investigation of the Electrostatic Discharge(ESD) Damage in Packaged Semiconductor Devices (패키지 반도체소자의 ESD 손상에 대한 실험적 연구)

  • Kim, Sang-Ryull;Kim, Doo-Hyun;Kang, Dong-Kyu
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.4
    • /
    • pp.94-100
    • /
    • 2002
  • As the use of automatic handling equipment for sensitive semiconductor devices is rapidly increased, manufacturers of electronic components and equipments need to be more alert to the problem of electrostatic discharges(ESD). In order to analyze damage characteristics of semiconductor device damaged by ESD, this study adopts a new charged-device model(CDM), field-induced charged model(FCDM) simulator that is suitable for rapid, routine testing of semiconductor devices and provides a fast and inexpensive test that faithfully represents ESD hazards in plants. High voltage applied to the device under test is raised by the field of non-contacting electrodes in the FCDM simulator, which avoids premature device stressing and permits a faster test cycle. Discharge current and time are measured and calculated. The characteristics of electrostatic attenuation of domestic semiconductor devices are investigated to evaluate the ESD phenomena in the semiconductors. Also, the field charging mechanism, the device thresholds and failure modes are investigated and analyzed. The damaged devices obtained in the simulator are analyzed and evaluated by SEM. The results obtained in this paper can be used to prevent semiconductor devices form ESD hazards and be a foundation of research area and industry relevant to ESD phenomena.

Computer Modeling and characteristics of MFMIS devices Using Ferroelectric PZT Thin Film (강유전체 PZT박막을 이용한 MFMIS소자의 모델링 및 특성에 관한 시뮬레이션 연구)

  • 국상호;박지온;문병무
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.3
    • /
    • pp.200-205
    • /
    • 2000
  • This paper describes the structure modeling and operation characteristics of MFMIS(metal-ferroelectric-metal-insulator-semiconductor) device using the Tsuprem4 which is a semiconductor device tool by Avanti. MFMIS device is being studied for nonvolatile memory application at various semiconductor laboratory but it is difficult to fabricate and analyze MFMIS devices using the semiconductor simulation tool: Tsuprem4, medici and etc. So the new library and new materials parameters for adjusting ferroelectric material and platinum electrodes in the tools are studied. In this paper structural model and operation characteristics of MFMIS devices are measured, which can be easily adopted to analysis of MFMIS device for nonvolatile memory device application.

  • PDF

Molecular Dynamics study of Aluminum growth using Aluminum Cluster Deposition (알루미늄 덩어리를 사용한 알루미늄 성장에 관한 분자동력학 연구)

  • J.W. Kang;K.R. Byun;W.H. Mun;E.S. Kang;H.J. Hwang
    • Proceedings of the IEEK Conference
    • /
    • 2000.06b
    • /
    • pp.306-309
    • /
    • 2000
  • In this work, we investigated A1 cluster deposition on Al (100) surface using molecular dynamics simulation. A result of simulations showed that large cluster with low energy was proper for good surfaced-films without craters at the low temperatures. We investigated the maximum substrate temperature and the time taken for substrate temperature to reach its maximum as a function of cluster size in the case of the same total energy and in the case of the same energy Per atom. The correlated collisions play an important role in interaction between energetic cluster and surface, and as cluster size and cluster energy increases, the correlated collisions effect affects interaction between energetic cluster and surface.

  • PDF

Analysis on Self-Heating Effect in 7 nm Node Bulk FinFET Device

  • Yoo, Sung-Won;Kim, Hyunsuk;Kang, Myounggon;Shin, Hyungcheol
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.2
    • /
    • pp.204-209
    • /
    • 2016
  • The analyses on self-heating effect in 7 nm node non-rectangular Bulk FinFET device were performed using 3D device simulation with consideration to contact via and pad. From self-heating effect simulation, the position where the maximum lattice temperature occurs in Bulk FinFET device was investigated. Through the comparison of thermal resistance at each node, main heat transfer path in Bulk FinFET device can be determined. Self-heating effect with device parameter and operation temperature was also analyzed and compared. In addition, the impact of interconnects which are connected between the device on self-heating effect was investigated.