• 제목/요약/키워드: semi-linear system

검색결과 122건 처리시간 0.036초

Model predictive control strategies for protection of structures during earthquakes

  • Xu, Long-He;Li, Zhong-Xian
    • Structural Engineering and Mechanics
    • /
    • 제40권2호
    • /
    • pp.233-243
    • /
    • 2011
  • This paper presents a theoretical study of a model predictive control (MPC) strategy employed in semi-active control system with magnetorheological (MR) dampers to reduce the responses of seismically excited structures. The MPC scheme is based on a prediction model of the system response to obtain the control actions by minimizing an objective function, which can compensate for the effect of time delay that occurred in real application. As an example, a 5-story building frame equipped with two 20 kN MR dampers is presented to demonstrate the performance of the proposed MPC scheme for addressing time delay and reducing the structural responses under different earthquakes, in which the predictive length l = 5 and the delayed time step d = 10, 20, 40, 60, 100 are considered. Comparison with passive-off, passive-on, and linear quadratic Gaussian (LQG) control strategy indicates that MPC scheme exhibits good control performance similar to the LQG control strategy, both have better control effectiveness than two passive control methods for most cases, and the MPC scheme used in semi-active control system show more effectiveness and robustness for addressing time delay and protecting structures during earthquakes.

State set estimation based MPC for LPV systems with input constraint

  • Jeong, Seung-Cheol;Kim, Sung-Hyun;Park, Poo-Gyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.530-535
    • /
    • 2004
  • This paper considers a state set estimation (SSE) based model predictive control (MPC) for linear parameter- varying (LPV) systems with input constraint. We estimate, at each time instant, a feasible set of all states which are consistent with system model, measurements and a priori information, rather than the state itself. By combining a state-feedback MPC and an SSE, we design an SSE-based MPC algorithm that stabilizes the closed-loop system. The proposed algorithm is solved by semi-de�nite program involving linear matrix inequalities. A numerical example is included to illustrate the performance of the proposed algorithm.

  • PDF

SINGLE STEP REAL-VALUED ITERATIVE METHOD FOR LINEAR SYSTEM OF EQUATIONS WITH COMPLEX SYMMETRIC MATRICES

  • JingJing Cui;ZhengGe Huang;BeiBei Li;XiaoFeng Xie
    • 대한수학회보
    • /
    • 제60권5호
    • /
    • pp.1181-1199
    • /
    • 2023
  • For solving complex symmetric positive definite linear systems, we propose a single step real-valued (SSR) iterative method, which does not involve the complex arithmetic. The upper bound on the spectral radius of the iteration matrix of the SSR method is given and its convergence properties are analyzed. In addition, the quasi-optimal parameter which minimizes the upper bound for the spectral radius of the proposed method is computed. Finally, numerical experiments are given to demonstrate the effectiveness and robustness of the propose methods.

ASYMPTOTIC BEHAVIOUR FOR SEMILINEAR DIFFERENTIAL SYSTEMS

  • Song, Se-Mok;Im, Dong-Man;Lee, Gi-Soo
    • Journal of applied mathematics & informatics
    • /
    • 제15권1_2호
    • /
    • pp.527-537
    • /
    • 2004
  • This paper deals with the asymptotic behaviour for the semi-linear differential systems x' (t) = A(t)χ + f(t, x). We give a detailed proof of known generalization of Coppel's result about the above mentioned system.

BLOW UP OF SOLUTIONS TO A SEMILINEAR PARABOLIC SYSTEM WITH NONLOCAL SOURCE AND NONLOCAL BOUNDARY

  • Peng, Congming;Yang, Zuodong
    • Journal of applied mathematics & informatics
    • /
    • 제27권5_6호
    • /
    • pp.1435-1446
    • /
    • 2009
  • In this paper we investigate the blow up properties of the positive solutions to a semi linear parabolic system with coupled nonlocal sources $u_t={\Delta}u+k_1{\int}_{\Omega}u^{\alpha}(y,t)v^p(y,t)dy,\;v_t={\Delta}_v+k_2{\int}_{\Omega}u^q(y,t)v^{\beta}(y,t)dy$ with non local Dirichlet boundary conditions. We establish the conditions for global and non-global solutions respectively and obtain its blow up set.

  • PDF

Tracking control of variable stiffness hysteretic-systems using linear-parameter-varying gain-scheduled controller

  • Pasala, D.T.R.;Nagarajaiah, S.;Grigoriadis, K.M.
    • Smart Structures and Systems
    • /
    • 제9권4호
    • /
    • pp.373-392
    • /
    • 2012
  • Tracking control of systems with variable stiffness hysteresis using a gain-scheduled (GS) controller is developed in this paper. Variable stiffness hysteretic system is represented as quasi linear parameter dependent system with known bounds on parameters. Assuming that the parameters can be measured or estimated in real-time, a GS controller that ensures the performance and the stability of the closed-loop system over the entire range of parameter variation is designed. The proposed method is implemented on a spring-mass system which consists of a semi-active independently variable stiffness (SAIVS) device that exhibits hysteresis and precisely controllable stiffness change in real-time. The SAIVS system with variable stiffness hysteresis is represented as quasi linear parameter varying (LPV) system with two parameters: linear time-varying stiffness (parameter with slow variation rate) and stiffness of the friction-hysteresis (parameter with high variation rate). The proposed LPV-GS controller can accommodate both slow and fast varying parameter, which was not possible with the controllers proposed in the prior studies. Effectiveness of the proposed controller is demonstrated by comparing the results with a fixed robust $\mathcal{H}_{\infty}$ controller that assumes the parameter variation as an uncertainty. Superior performance of the LPV-GS over the robust $\mathcal{H}_{\infty}$ controller is demonstrated for varying stiffness hysteresis of SAIVS device and for different ranges of tracking displacements. The LPV-GS controller is capable of adapting to any parameter changes whereas the $\mathcal{H}_{\infty}$ controller is effective only when the system parameters are in the vicinity of the nominal plant parameters for which the controller is designed. The robust $\mathcal{H}_{\infty}$ controller becomes unstable under large parameter variations but the LPV-GS will ensure stability and guarantee the desired closed-loop performance.

A Semi-Implicit Method for the Analysis of Two-Dimensional Fluid Flow with Moving Free Surfaces

  • Lee, Woo-Il;Park, Jong-Sun;Kim, Min-Soo;Lee, Joon-Sik
    • Journal of Mechanical Science and Technology
    • /
    • 제16권5호
    • /
    • pp.720-731
    • /
    • 2002
  • Flow with moving free surfaces is analyzed with an the Eulerian coordinate system. This study proposes a semi-implicit filling algorithm using VOF in which the PLIC (Piecewise Linear Interface Calculation) -type interface reconstruction method and the donor-acceptor-type front advancing scheme are adopted. Also, a new scheme using extrapolation of the stream function is proposed to find the velocity of the node that newly enters the computational domain. The effect of wall boundary conditions on the flow field and temperature field is examined by numerically solving a two-dimensional casting process.

UNCONDITIONALLY STABLE GAUGE-UZAWA FINITE ELEMENT METHODS FOR THE DARCY-BRINKMAN EQUATIONS DRIVEN BY TEMPERATURE AND SALT CONCENTRATION

  • Yangwei Liao;Demin Liu
    • 대한수학회보
    • /
    • 제61권1호
    • /
    • pp.93-115
    • /
    • 2024
  • In this paper, the Gauge-Uzawa methods for the Darcy-Brinkman equations driven by temperature and salt concentration (DBTC) are proposed. The first order backward difference formula is adopted to approximate the time derivative term, and the linear term is treated implicitly, the nonlinear terms are treated semi-implicit. In each time step, the coupling elliptic problems of velocity, temperature and salt concentration are solved, and then the pressure is solved. The unconditional stability and error estimations of the first order semi-discrete scheme are derived, at the same time, the unconditional stability of the first order fully discrete scheme is obtained. Some numerical experiments verify the theoretical prediction and show the effectiveness of the proposed methods.

Semi-active seismic control of a 9-story benchmark building using adaptive neural-fuzzy inference system and fuzzy cooperative coevolution

  • Bozorgvar, Masoud;Zahrai, Seyed Mehdi
    • Smart Structures and Systems
    • /
    • 제23권1호
    • /
    • pp.1-14
    • /
    • 2019
  • Control algorithms are the most important aspects in successful control of structures against earthquakes. In recent years, intelligent control methods rather than classical control methods have been more considered by researchers, due to some specific capabilities such as handling nonlinear and complex systems, adaptability, and robustness to errors and uncertainties. However, due to lack of learning ability of fuzzy controller, it is used in combination with a genetic algorithm, which in turn suffers from some problems like premature convergence around an incorrect target. Therefore in this research, the introduction and design of the Fuzzy Cooperative Coevolution (Fuzzy CoCo) controller and Adaptive Neural-Fuzzy Inference System (ANFIS) have been innovatively presented for semi-active seismic control. In this research, in order to improve the seismic behavior of structures, a semi-active control of building using Magneto Rheological (MR) damper is proposed to determine input voltage of Magneto Rheological (MR) dampers using ANFIS and Fuzzy CoCo. Genetic Algorithm (GA) is used to optimize the performance of controllers. In this paper, the design of controllers is based on the reduction of the Park-Ang damage index. In order to assess the effectiveness of the designed control system, its function is numerically studied on a 9-story benchmark building, and is compared to those of a Wavelet Neural Network (WNN), fuzzy logic controller optimized by genetic algorithm (GAFLC), Linear Quadratic Gaussian (LQG) and Clipped Optimal Control (COC) systems in terms of seismic performance. The results showed desirable performance of the ANFIS and Fuzzy CoCo controllers in considerably reducing the structure responses under different earthquakes; for instance ANFIS and Fuzzy CoCo controllers showed respectively 38 and 46% reductions in peak inter-story drift ($J_1$) compared to the LQG controller; 30 and 39% reductions in $J_1$ compared to the COC controller and 3 and 16% reductions in $J_1$ compared to the GAFLC controller. When compared to other controllers, one can conclude that Fuzzy CoCo controller performs better.

수밀댐퍼 구동장치의 강인제어에 관한 연구 (Design of a Robust Controller for a Watertight Damper Driving System)

  • 한승훈;장지성
    • 드라이브 ㆍ 컨트롤
    • /
    • 제14권2호
    • /
    • pp.45-51
    • /
    • 2017
  • Semi-submersible drilling rigs are offshore plants that perform functions such as ocean exploration for oil and gas acquisition, drilling and production, and storage and unloading of crude oil and gas. Semi-submersible drilling rigs use watertight dampers as emergency buoyancy holders. Since the watertight damper is an emergency shutoff device, it is mainly driven by a pneumatic driving system that can operate without a power supply. The pneumatic driving system has highly non-linear characteristics due to compressibility of air and external disturbance such as static and Coulomb friction. In this paper, a new control algorithm is proposed for a watertight damper driving system based on the sliding mode control with a disturbance observer. To evaluate control performance and robust stability of the designed controller, the control results were compared with the results obtained using the state feedback controller. As a result, it was confirmed that the pneumatic driving system for driving the watertight damper using the sliding mode controller with a disturbance observer can obtain excellent control performance against the parameter changes and the disturbance input.