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Abstract: This paper considers a state set estimation (SSE) based model predictive control (MPC) for linear parameter-

varying (LPV) systems with input constraint. We estimate, at each time instant, a feasible set of all states which are consistent

with system model, measurements and a priori information, rather than the state itself. By combining a state-feedback MPC

and an SSE, we design an SSE-based MPC algorithm that stabilizes the closed-loop system. The proposed algorithm is solved

by semi-definite program involving linear matrix inequalities. A numerical example is included to illustrate the performance of

the proposed algorithm.
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1. Introduction
Model predictive control (MPC), also known as receding

horizon control (RHC), has received much attention in con-

trol societies because of its capability of handling constraints,

time-varying systems as well as its good tracking perfor-

mance [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12]. The

basic concept of MPC is to solve an optimization problem

over future time instants at the current time and to imple-

ment the first one among the solutions as the current control

law. The procedure is repeated at each subsequent instant.

There is a huge body of results for the state-feedback MPC

in the literature, but there exist only a few results for the

output-feedback MPC. In fact, it is assumed in all the works

mentioned above that the state is available. However, only

a partial state is available in for the most part real systems.

When all the states are not available for feedback, i.e. in

output feedback problems, the observer-based approach has

generally been adopted where the controller is composed of

a state observer and a static controller associated with ob-

server states. In [13], the observer-based approach is adopted

and the closed-loop stability is guaranteed, but only open-

loop stable systems are dealt with. In [14], a robust con-

strained output-feedback MPC using off-line linear matrix

inequalities (LMIs) is developed. To handle both constraints

and stability analysis, they first design, off-line, indepen-

dently, a robust constrained state feedback MPC and a state

estimator using the nominal plant model, and then analyze

the robust stability of combined controller and estimator. If

the robust stability criterion is satisfied, they determine on-

line a controller from the sequence of state-feedback laws.

However, if the robust stability criterion is not satisfied, they

iterate the whole off-line design procedure with new design

parameters. Hence, in some cases, the whole off-line design

must be done over and over again.

Recently, an LMI-based output-feedback MPC for time-

invariant systems is presented in [15] where instead of con-

structing an observer for unknown states, their extreme val-

ues or some of the statistical properties are used, much as in a

robust control scheme. Although this approach successfully
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handles both constraint handling and stability issue in the

output-feedback MPC, there is a drawback that when the

polyhedra obtained by convex combination of the extreme

values is large, the performance may considerably degrade.

Another source of conservatism is that the extreme values

never decrease even when the true state has approached to

the equilibrium point.

On the other hand, in other control area, there are some

works adopting state set estimation (SSE) rather than state

estimation [16], [17], [18]. The SSE yields a feasible set of all

states which are consistent with measurement data, model

structure and a priori information. While it is guaranteed

that the feasible state set contains the unknown true state,

it is generally irregular. Hence, in the literature, ellipsoids

were for the most part introduced to overbound the feasible

state sets, due to their light computational burden and ease

in mathematical expression [16], [17]. To describe the feasi-

ble sets exactly, some researchers often adopt the so called

polyhedral algorithm [18]. Although computational burdens

of some of the polyhedral algorithms are less heavy than

what could have been expected, those algorithms still suffer

from heavy computation and complexity when the number

of states is large.

In this paper, unlike the existing output feedback MPCs,

we present an SSE-based MPC for linear parameter-varying

(LPV) systems with input constraint. The proposed control

scheme consists of finding an ellipsoidal state set from given

information and designing an MPC based on the state set.

To find ellipsoidal state set including the unknown real state,

we propose an LMI-based ellipsoidal SSE algorithm rather

than use an existing SSE algorithm, whose concepts are sim-

ilar to those of existing algorithms, but which consists of

only one optimization problem involving LMIs, hence ellip-

soidal state sets can be found efficiently by LMI solvers. By

using this algorithm, at each time instant, we find a bound-

ing ellipsoid of the feasible state set, rather than a point

estimate of state accompanied by estimation error. Then,

we design an SSE-based MPC by combining the well-known

state-feedback MPC and the resulting state set through the

S-procedure. The SSE-based MPC can be found on-line by
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solving two optimization problems sequentially, i.e., one is

for the state set and the other for the controller at each

time. The input constraint is handled on-line as in the state-

feedback MPC algorithm and the feasibility and the closed-

loop stability are guaranteed.

The paper is organized as follows. Section 2. states target

systems, assumptions, the associated problem and presents

preliminary results. Section 3.supplies an LMI-based ellip-

soidal SSE algorithm. Section 4.presents the SSE-based MPC

algorithm. It is guaranteed in the same section that the

proposed controller stabilizes the closed-loop system. Sec-

tion 5.illustrates the performance of the proposed controller

through one example. Finally, some concluding remarks are

presented in Section 6..

2. Problem Statements
Consider the LPV system

x(k + 1) = A(θ(k))x(k) + B(θ(k))u(k),

y(k) = Cx(k),
(1)

subject to input constraint

−u ≤ u(k) ≤ u, for all k ∈ [0,∞), (2)

where x(k) ∈ Rn is the state, u(k) ∈ Rm is the control input

and y(k) ∈ Rl is the output, respectively. We assume that

the system described by (1) is stabilizable and detectable and

the output is measurable, but not the state x(k). The time-

varying system matrices A(θ(k)) and B(k) are assumed to be

affine functions of the parameter vector θ(k) and the time-

varying parameter vector θ(k) is assumed to be available at

each time k and belong to a convex polytope, i.e.

[A(θ(k))|B(θ(k))] =

p∑
i=1

θi(k)[Ai|Bi],

p∑
i=1

θi(k) = 1, 0 ≤ θi(k) ≤ 1.

(3)

Thus, the varying matrices A(θ(k)) and B(k) vary inside a

polytope Ω for all time. That is,

[A(θ(k))|B(θ(k))] ∈ Ω
4
= {[A1|B1], ..., [Ap|Bp]}, (4)

where Co denotes the convex hull and [Ai|Bi] are vertices

of the convex hull. The initial state x(0) at time k = 0

is assumed to be unknown but lies within in the following

ellipsoidal region:

E0 = {x(0) ∈ Rn | [x(0)−χ(0)]T M(0)[x(0)−χ(0)] ≤ 1} (5)

where M(0) ∈ Rn×n is a positive definite matrix and χ(0) ∈
Rn is the center of the ellipsoid.

The goal of this paper is to find a stabilizing SSE-based

control u(k) for (1) by the MPC strategy. To find such a

control, we shall consider the following min-max problem at

each time instants

min
u(k+i|k),i≥0

max
[A(k+i)|B(k+i)]∈ Ω,i≥0

J∞(k), (6)

subject to (1)-(5) and

J∞
4
=

∞∑
j=0

{
x(k + j|k)T Qx(k + j|k) + u(k + j|k)T Ru(k + j|k)

}
,

(7)

where Q > 0 and R > 0 are symmetric weighting matrices,

and x(k + j|k) and u(k + j|k) denote predicted variables of

the state and the input, respectively.

Before ending this section, we present an extended result

by combining existing results of [8] and [11] for the state-

feedback MPC.

Lemma 2..1: [8], [11] (State-feedback MPC) Temporarily

assume that the state x(k) is measurable at each time k.

Then, the optimization problem (6) subject to (1)-(5) and

(7) can be converted to the following optimization problem

min
γ,u(k),G,Y,Z,Xj>0,j=1,...,p

γ, (8)

subject to, for 1 ≤ j ≤ p, 1 ≤ l ≤ p and 1 ≤ i ≤ m,

0 ≤




1 (∗) (∗) (∗)
A(θ(k)x(k) + B(θ(k)u(k) Xj (∗) (∗)

Q1/2x(k) 0 γI (∗)
R1/2u(k) 0 0 γI


 , (9)

0 ≤




G + GT −Xj (∗) (∗) (∗)
AjG + BjY Xl (∗) (∗)

Q1/2G 0 γI (∗)
R1/2Y 0 0 γI


 , (10)

0 ≤
[

Z Y

Y T G + GT −Xj

]
, (11)

Zii ≤ u2
i , (12)

|u(k)| ≤ u, (13)

where ui is the i-th element of u, x(k) = x(k|k) and u(k) =

u(k|k). If the above optimization feasible at the initial time,

then it is always feasible. Moreover, if the control input is

applied to the system (1) by the MPC strategy, the closed-

loop system is robustly stable.

Proof: See Theorem 1 of [8] and Theorem 2 of [11].

3. LMI-based state set estimation (SSE)
algorithm

In this section, we present an LMI-based SSE algorithm,

which will be used in developing an output-feedback MPC

scheme in the next section. The proposed SSE algorithm is

motivated by recent developments in the theory and applica-

tion of optimization problem involving LMIs, which can be

solved in polynomial time. By using this algorithm, at each

time, we can find a bounding ellipsoid of the feasible set of

all states, which are consistent with measurement data, the

model structure and a priori information at each time, rather

than a point estimate of state accompanied by estimation er-

ror.
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Let Ek ∈ Rn be an ellipsoid including the state x(k) at time

k, represented by

Ek = {x(k) ∈ Rn | (x(k)− χ(k))T M(k)(x(k)− χ(k)) ≤ 1}.
(14)

where χ(k) is the center of the ellipsoid and M(k) is a pos-

itive definite matrix. Let Yk+1 ∈ Rn be the set of all x(k)

that is consistent with the measurement y(k + 1), i.e.

Yk+1 = {x(k + 1) ∈ Rn | y(k + 1) = Cx(k + 1)}. (15)

Let Xk+1|k ∈ Rn be the set of all x(k +1) that are predicted

along the system (1) from x(k) ∈ Ek, i.e.

Xk+1|k = {x(k + 1) ∈ Rn | x(k + 1) = A(θ(k))x(k)

+ B(θ(k))u(k), x(k) ∈ Ek}.
(16)

Then, at time k+1, the state x(k+1) is included in Xk+1|k+1

such that

Xk+1|k+1 = {x(k + 1) ∈ Rn | x(k + 1) ∈ Xk+1|k ∩ Yk+1}.
(17)

The SSE problem is to find the feasible state set, Xk+1|k+1,

explicitly in the n-dimensional state space at each time k+1.

Since the feasible state set is generally an irregular convex

set, the problem is, for the most part, redefined to find the

bounding ellipsoid of Xk+1|k+1 optimally in some sense. To

this end, let us define an ellipsoid

Ek+1 = {x(k + 1) ∈ Rn | (x(k + 1)− χ(k + 1))T M(k + 1)

(x(k + 1)− χ(k + 1)) ≤ 1},
(18)

which shall bounds Xk+1|k+1. Then, given Ek and Yk+1, the

original SSE problem is to redefined to find the following

ellipsoid

Theorem 1: (State set estimation,SSE) Assume that

χ(k), M(k), u(k) and yk+1 are given at time k + 1. Then,

χ(k + 1) and M(k + 1) can be obtained by the following

optimization problem:

min
τ,χ(k+1),N(k+1),Λ1,Λ2

det(N(k + 1)), (19)

subject to

0 ≤




1− τ + τχ(k)M(k)χ(k) + Λ1L1 + LT
1 ΛT

1

−τM(k)χ(k) + Λ2L1 + LT
2 ΛT

1

B(θ(k))u(k)− χ(k + 1)

(∗) (∗)
τM(k) + Λ2L2 + LT

2 ΛT
2 (∗)

A(θ(k)) N(k + 1)


 ,

(20)

where

N(k + 1)
4
=M−1(k + 1)

L1
4
=y(k + 1)− CB(θ(k))u(k)

L2
4
=− CA(θ(k))

(21)

Proof: First, note that for the case that SSE is combined

with control design, the smaller the size of Ek+1 is, the better

the control performance is clearly. Since the ellipsoid Ek+1

must include Xk+1|k+1, it can be found by the following op-

timization problem:

Minimize the determinant of M−1(k + 1) (22)

subject to (1) and

1 ≥ (x(k + 1)− χ(k + 1))T M(k + 1)(x(k + 1)− χ(k + 1)),

(23)

1 ≥ (x(k)− χ(k))T M(k)(x(k)− χ(k)), (24)

y(k + 1)− Cx(k + 1) = 0. (25)

By (1), (23) is converted to

0 ≤
[

1

x(k)

]T

M̄1(k)

[
1

x(k)

]
, (26)

where M̄1(k) =

[
1− [B(θ(k))u(k)− χ(k + 1)]T M(k + 1)[B(θ(k))u(k)− χ(k + 1)]

−AT (θ(k))M(k + 1)[B(θ(k))u(k)− χ(k + 1)]

(∗)
−AT (θ(k))M(k + 1)A(θ(k))

]
.

Similarly, (24) and (25) are respectively converted to

0 ≤
[

1

x(k)

]T [
1− χ(k)M(k)χ(k) (∗)

M(k)χ(k) −M(k)

] [
1

x(k)

]
,

(27)

and

0 =

[
1

x(k)

]T [
Λ1

Λ2

]

[
y(k + 1)− CB(θ(k))u(k) −CA(θ(k))

] [
1

x(k)

]
,

(28)

where Λ1 ∈ R1×l and Λ2 ∈ Rn×l are free variables. Using

the S-procedure and Schur complement, we obtain (20) from

(26)- (28).

Remark 1: Noting that an ellipsoid is transformed into an-

other ellipsoid by a linear transformation, we know that the

predicted state set Xk+1|k is an ellipsoid. Moreover, after

some investigation, we can know that there exist ellipsoids

that is included in Xk+1|k as well as overbounds the inter-

section of Xk+1|k and Yk+1. Ek+1 is one of such ellipsoids,

thus we have Ek+1 ⊂ Xk+1|k.

In the next section, based on the the results of previous two

sections, we shall develop an SSE-based MPC for LPV sys-

tems where only the output of system (1) is measurable.

4. SSE-based MPC
Among the inequalities of Lemma 2..1, the inequality (9)

is explicitly dependent on the current value of the state at
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each time k. Hence, we cannot utilize the Lemma 2..1 when

the full state is not available. However, if we can make the

inequality explicitly independent of the state, we can utilize

Lemma 2..1 even when the state is not available. In this

section, we shall transform the inequality (9) so that it is

explicitly independent of the state by using the S-procedure,

and present an SSE-based MPC algorithm combining the

state-feedback MPC and the SSE.

We present the main result of this paper in the following

theorem, which is analogous to Lemma 2..1 for the state-

feedback MPC.

Theorem 2: (Optimization for SSE-based MPC)

Assume that the exact value of the state x(k) is not available,

but it is contained in the known ellipsoid Ek represented by

1 ≥ (x(k)− χ(k))T M(k)(x(k)− χ(k)), (29)

at each time k, where χ(k) and M(k) are given. Then, the

optimization problem (6) subject to (1)-(5) and (7) can be

converted to the following optimization problem

min
γ,λ,u(k),G,Y,Z,Xj>0,j=1,...,p

γ, (30)

subject to, for 1 ≤ j ≤ p, 1 ≤ l ≤ p, and 1 ≤ i ≤ m,

0 ≤




1− λ + λχ(k)M(k)χ(k) (∗) (∗) (∗) (∗)
−λM(k)χ(k) λM(k) (∗) (∗) (∗)
B(θ(k))u(k) A(θ(k)) Xj (∗) (∗)

0 Q1/2 0 γI (∗)
R1/2u(k) 0 0 0 γI




,

(31)

0 ≤




G + GT −Xj (∗) (∗) (∗)
AjG + BjY Xl (∗) (∗)

Q1/2G 0 γI (∗)
R1/2Y 0 0 γI


 , (32)

0 ≤
[

Z Y

Y T G + GT −Xj

]
, (33)

Zii ≤ u2
i , (34)

|u(k)| ≤ u, (35)

where ui is the i-th element of u, λ is a positive real scalar

and Y = KG.

Proof: Let us convert (9) to

0 ≤
[

1

x(k)

]T

M̄2(k)

[
1

x(k)

]
, ∀j = 1, ..., p, (36)

where M̄2(k) =

[
1− γ−1u(k)T Ru(k)− u(k)T BT (θ(k))X−1

j B(θ(k))u(k)

−AT (θ(k))X−1
j B(θ(k))u(k)

−u(k)T BT (θ(k))X−1
j A(θ(k))

−γ−1Q−AT (θ(k))X−1
j A(θ(k))

]
.

On the other hand, it is known from Section 3.that x(k) lies

in the ellipsoid Ek represented by

1 ≥ (x(k)− χ(k))T M(k)(x(k)− χ(k)), (37)

which can be converted to (27). Using the S-procedure for

(27) and (36), applying the Schur complement, we have (31).

The others are same as those of Lemma 2..1.

Theorem 3: (Feasibility and stability) If the on-line

optimization problem (30) subject to (31)-(35) is feasible at

time k, then the problem is feasible for all time instant

greater than k. Moreover, the feasible SSE-based MPC

asymptotically stabilizes the closed-loop system.

Proof: Since the proof of this Theorem is analogous to that

of Theorem 3 of [8] and those of Lemma 2 and Theorem 3

of [12] with N = 1, we shall briefly sketch the proof. (Fea-

sibility) the feasibility of the optimization problem (30) at

time k implies satisfaction of (31) and (32) for all uncer-

tainty and any x(k) belonging to the current state set, i.e.

x(k) ∈ Ek. Thus, for any [A(θ(k + i))|B(θ(k + i))] ∈ Ω, i ≥ 0

and any x(k) ∈ Ek, the predicted state x(k + 1|k) ∈ Xk+1|k
must satisfy (31). Since the state set at time k + 1 is in-

cluded in Xk+1|k, i.e. Ek+1 ⊂ Xk+1|k (see Remark 1), any

x(k + 1) ∈ Ek+1 must also satisfy (31). This is the key

point of the proof of feasibility. (Stability) moreover, the

closed-loop stability can be proved by showing the optimal

solution of Theorem 2 is a strictly decreasing Lyapunov func-

tion. This is in turn probed by using the fact that the op-

timal solution at time k is feasible (not necessarily optimal)

at time k + 1 (similarly to [6], [8]).

Remark 2: When the state is available, we can also find the

state-feedback MPC through the proposed output-feedback

MPC algorithm given in Theorem 2. It can be done as

follows. Since the exact state value is available, we set

χ(k) = x(k) and M(k) = ∞I. In algorithm, it is suffi-

cient to set M(k) = cI where c is a large value, for example

c = 1e5. Therefore, the proposed output-feedback MPC al-

gorithm given in Theorem 2 includes the state-feedback MPC

algorithm given in Lemma 2..1.

We summarize the proposed SSE-based MPC algorithm in

the following proposition.

Proposition 1: (SSE-based MPC algorithm)

(1) (Initial) at the initial time k = 0, χ(0) and M(0) are

assume to be given.

(2) (Generic) at time k, solve the optimization problem (30)

subject to (31)-(35).

(3) Apply u(k) to the system.

(4) Find the ellipsoidal state set Ek+1 for x(k + 1), i.e., find

χ(k + 1) and M(k + 1) by solving the optimization problem

(19) subject to (20).

(5) At time k + 1, repeat (2) - (4).

5. Numerical example

To demonstrate the performance of the proposed algorithm,

let us consider the following system, which consist of a two-
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mass-spring system and appears as an example in [6]:

x(k + 1) =




1 0 0.1 1

0 1 0 0.1

−0.1K 0.1K 1 0

0.1K −0.1K 0 1


 x(k) +




0

0

0.1

0


 u(k),

y(k) =

[
1 0 0 0

0 1 0 0

]
x(k), |u(k)| ≤ 1,

(38)

where x1 and x2 are the positions of body 1 and 2, and

x3 and x4 are their velocities respectively. We assume that

the output is only available for feedback and K = 0.5. The

initial state is x(0) = [0 0 0 0]T but the values of x3(0) and

x4(0) are unknown. Instead, we assume that x(0) lies in the

following ellipsoidal region with χ(0) =
[

0 0 0 0
]T

E(0)
4
= {x(0) ∈ Rn|(x(0)− χ(0))T M(0)(x(0)− χ(0))},

M(0)−1/2 =




0.00001 0 0 0

0 0.00001 0 0

0 0 0.3 0

0 0 0 0.3


 .

Note that the larger the ellipsoidal region, the bigger the

uncertainty of the initial state. Other simulation parame-

ters are Q = diag(1, 1, 1, 1) and R = 1. All optimization

problems are solved by Matlab LMI-Toolbox 6.5.

The objective is to design an SSE-based MPC for the output

y2(k) to track the set point yr = 1. To this ends, using the

technique of [12], we must have at steady state x1s = 1, x2s =

1, x3s = 0, x4s = 0 and us = 0. By shifting the origin to

the steady state, we reduce the problem to the regulation

problem presented in this paper with the initial condition

x(0) = [−1 − 1 0 0]T .

Evolutions of state sets and true state are shown in Figure

1 where the state set includes the true state at each time k.

Figure 2 shows the nice performance of the proposed SSE-

based MPC scheme. On the other hand, [15] fails to control

for |x3(k)| < 0.4, |x4(k)| < 0.4. If one keeps in mind the

fact that the real values of x3 and x4 are larger than 0.4 at

some time instants even under the state-feedback environ-

ment, he can realize that 0.4 is not too a large value but a

fairly reasonable one for the upper bound value of x3 and x4.

The difference is due to that the proposed SSE-based MPC

upgrade the ellipsoidal region at each time instant, but [15]

does not.

6. Concluding Remarks
In this paper, we proposed an SSE-based MPC algorithm for

LPV systems with input constraint. At each time instant,

we first found the feasible state set which are consistent with

the system model and the measurements and a priori infor-

mation, rather than estimate the state itself. By combining

the state-feedback MPC and the SSE, we constructed an

SSE-based MPC algorithm which stabilize the closed-loop

system. The proposed algorithm is solved by semi-definite

program involving LMIs. Through an example, we showed

the nice performance of the proposed controller.
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