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UNCONDITIONALLY STABLE GAUGE-UZAWA FINITE

ELEMENT METHODS FOR THE DARCY-BRINKMAN

EQUATIONS DRIVEN BY TEMPERATURE AND SALT

CONCENTRATION

Yangwei Liao and Demin Liu

Abstract. In this paper, the Gauge-Uzawa methods for the Darcy-

Brinkman equations driven by temperature and salt concentration

(DBTC) are proposed. The first order backward difference formula is
adopted to approximate the time derivative term, and the linear term is

treated implicitly, the nonlinear terms are treated semi-implicit. In each

time step, the coupling elliptic problems of velocity, temperature and
salt concentration are solved, and then the pressure is solved. The un-

conditional stability and error estimations of the first order semi-discrete
scheme are derived, at the same time, the unconditional stability of the

first order fully discrete scheme is obtained. Some numerical experiments

verify the theoretical prediction and show the effectiveness of the proposed
methods.

1. Introduction

The DBTC can be used to describe the double-diffusive convection phenom-
enon driven by temperature and salt concentration, where the salt concentra-
tion changes with temperature [5, 18, 21, 24]. The DBTC have a wide variety
of applications such as metallurgy, grain storage and contaminant transport in
ground water [1]. So the equations play a key role in industry and engineering
today.

Due to the DBTC have important applications in industry production, a lot
of researches for the Darcy-Brinkman equations, in which salt concentration is
not affected by temperature, have been done in the past decades. In the fields of
theoretical analysis, according to the fixed point theorem in the Banach space,
Zhu et al. [26] proved that if the body forces belong to appropriate Sobolev
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spaces, the stationary Darcy-Brinkman equations possess a unique weak solu-
tion. Liu [9] studied the structural stability for Brinkman-Forchheimer equa-
tions which can be seen as an extension of the Darcy-Brinkman equations, and
proved the convergence and continuous dependence results about the Darcy
coefficient λ. Tone et al. [21] proposed a second order scheme for the Darcy-
Brinkman equations with the Darcy coefficient λ = 0 which based on backward
differentiation formula for the time derivative and explicitly for the nonlin-
ear term, proved the existence of attractors. In the fields of numerical sim-
ulation, Goyeau et al. [5] proposed the finite volume method for the Darcy-
Brinkman equations. Applying the Fourier-Galerkin spectral method to the
Darcy-Brinkman equations, Shao et al. [18] obtained the high-precision solu-
tion in confined saturated porous media. Çıbık et al. [2] proposed and ana-
lyzed a family of second order time stepping methods for the Darcy-Brinkman
equations. Yang and Jiang [24] proposed a fully explicitly uncoupled varia-
tional multiscale stabilization method for the Darcy-Brinkman equations, they
added a separate, uncoupled, and modular postprocessing step to each time
step. Zeng et al. [25] proposed the deferred defect-correction method for the
Darcy-Brinkman equations based on the mixed finite element method and de-
duced unconditional stability and convergence of the method. Liao and Huang
[8] investigated the modified characteristics method for the Darcy-Brinkman
equations, and so on.

It is noted that there are some numerical difficulties for the DBTC: (i)
multiphysics field; (ii) the coupling of the velocity and pressure through the in-
compressibility constraint; (iii) nonlinear properties, which make the equations
difficult to be solved numerically. So it is still a challenging to construct a stable
and efficient numerical method for the DBTC. The above mentioned methods
still need to solve the saddle-point problem, which results in the large-scale
coupled system, so the above mentioned methods need to satisfy LBB condi-
tion. Recently, the Gauge-Uzawa method was widely used to approximate the
Navier-Stokes equations, which can increase the stability of numerical solution,
reduce the solution scale and improve the computational efficiency. Pyo [14]
proposed the semi-discrete Gauge-Uzawa method for the Navier-Stokes equa-
tions, and the optimal error estimate was obtained by the energy method. Pyo
and Shen [15] designed the second order time discretization scheme of Navier-
Stokes equations through the second order backward difference formula. In
addition, Pyo and Shen [16] extended the Gauge-Uzawa method to solve the
Navier-Stokes equations with variable density. Feng et al. [23] applied the
Gauge-Uzawa method to the natural convection equations with variable den-
sity, some numerical experiments were given to illustrate the effectiveness of
the method.

Inspired by Nochetto and Pyo [11, 12], the Gauge-Uzawa methods for the
DBTC are proposed in this paper. The basic idea of the methods is that
backward difference formulas are used to approximate the time derivative term,
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and the linear term is treated implicitly, the nonlinear terms are treated semi-
implicit, which can reduce the scale of calculation and save costs. Moreover, the
unconditional stability of the first order semi-discrete and full discrete scheme
are deduced, and the error estimations of the first order semi-discrete scheme
are derived. Some numerical experiments verify the theoretical prediction and
show the effectiveness of the proposed method.

The remainder of this paper is organized as follows. In Section 2, the DBTC
and preliminaries are given. In Section 3, the first order semi-discrete Gauge-
Uzawa method is given, and the stability and error estimations of the first order
semi-discrete method are deduced. In Section 4, the first order full discretiza-
tion method is presented, and the stability of the first order full discretization
method is deduced. In Section 5, numerical experiments are showed to confirm
theoretical results.

2. Problem statement and variational formulation

2.1. Problem statement

In this paper, let Ω ⊂ Rd, d = 2 or 3, be a connected domain with sufficiently
smooth boundary ∂Ω. For all (x, t) ∈ Ω× (0, T ], the dimensionless form of the
DBTC can be written as:

ut − ν∆u+ (u · ∇)u+ λu+∇p = f +RaTg −RsCg,

∇ · u = 0,

Tt + (u · ∇)T −∆T = γ,

Ct + (u · ∇)C −∆C = η + LΨ(T )− κC,

(1)

where the unknown variables are velocity u = u(x, t), pressure p = p(x, t),
temperature T = T (x, t) and salt concentration C = C(x, t). The coupling
system of (1) represents the conservation laws of momentum, mass, energy and
salt concentration. The other constants Ra, Rs are the thermal and solutal
Rayleigh numbers, L ≥ 0 is the chemical equilibrium coefficient, κ ≥ 0 is the
salt concentration coefficient. Besides, the parameter ν > 0 is the kinematic
viscosity, λ is the Darcy coefficient, g represents the gravitational acceleration,
f is the body forces, γ and η denote the source terms [4]. The function Ψ
is at least C1, and LΨ(T ) is considered to be the chemical equilibrium term.
Based on [10,13,22], LΨ(T ) = LT is assumed in this paper. Furthermore, the
homogeneous Dirichlet boundary conditions

u = 0, T = 0, C = 0,(2)

and the initial conditions

(3) u(x, 0) = u0(x), T (x, 0) = T 0(x), C(x, 0) = C0(x),

are supplied for (1).
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2.2. Variational formulation

Let Hm(Ω), m = 0, 1, 2, . . ., denote the Sobolev spaces, equipped with the
norm ∥ · ∥m, and Hm

0 (Ω) denote the subspace of Hm(Ω) with the homogeneous
boundary conditions. In particular, when m = 0, let H0(Ω) = L2(Ω) denote
the square integrable Sobolev space equipped with inner product (·, ·) and norm
∥·∥0. Furthermore, let H−1(Ω) is the dual space of H1

0 (Ω) equipped with norm

∥f∥−1 = sup
v∈H1

0 (Ω)

|(f, v)|
∥∇v∥0

, ∀f ∈ H−1(Ω).

In order to consider the variational problem of (1), the following Sobolev spaces
are introduced.

X = H1
0 (Ω)

d, M = H1
0 (Ω),

Y = L2
0(Ω) =

{
v ∈ L2(Ω) :

∫
Ω

q(x)dx = 0
}
,

V =
{
v ∈ X : ∇ · v = 0

}
,

H =
{
v ∈ X : ∇ · v = 0, v · n|∂Ω = 0

}
.

The Galerkin variational problem of (1) is: for all t ∈ (0, T ], find (u, p, T, C)
∈ X×Y ×M ×M , such that for all (v, q,W, S) ∈ X×Y ×M ×M , there exists

(ut, v)+νa(u, v)+b1(u, u, v)+λ(u, v)=(f, v)+Ra(Tg, v)−Rs(Cg, v),

d(u, q) = 0,

(Tt,W ) + ã(T,W ) + b2(u, T,W ) = (γ,W ),

(Ct, S) + ã(C, S) + b2(u,C, S) = (η, S) + (LΨ(T ), S)− (κC, S),

(4)

where the bilinear and trilinear forms are defined as follows:

a(u, v) = (∇u,∇v), ã(T,W ) = (∇T,∇W ),

d(v, p) = (∇ · v, q),

b1(u, u, v) =
1

2
((u · ∇)u, v)− 1

2
((u · ∇)v, u),

b2(u, T,W ) =
1

2
((u · ∇)T,W )− 1

2
(u · ∇)W,T ).

The following properties of b1(·, ·, ·) are well known [20]:

b1(u, v, w) = −b1(u,w, v), b1(u, v, v) = 0, ∀u ∈ H, ∀w, v ∈ X,

and

b1(u, v, w) ≤


c∥u∥1∥v∥1∥w∥1, ∀u, v, w ∈ X,
c∥u∥2∥v∥0∥w∥1, ∀u ∈ H2(Ω)d ∩X, ∀v, w ∈ X,
c∥u∥2∥v∥1∥w∥0, ∀u ∈ H2(Ω)d ∩X, ∀v, w ∈ X,
c∥u∥1∥v∥2∥w∥0, ∀v ∈ H2(Ω)d ∩X, ∀u,w ∈ X.
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For simplicity, in the following paragraph, c is used to denote a general positive
constant which depends on Ω, f , s, h, u0, T 0, C0, and other constants from
various Sobolev inequalities.

Based on Hölder inequality, Poincaré inequality and Sobolev imbedding the-
orems, it is easy to prove that b2(·, ·, ·) satisfies the following properties [17]:

b2(u, T,W ) = −b2(u,W, T ), b2(u, T, T ) = 0, ∀u ∈ H, ∀T,W ∈M,

and

b2(u, T,W ) ≤


c∥u∥1∥T∥1∥W∥1, ∀u, T,W ∈ X, ∀T,W ∈M,
c∥u∥2∥T∥0∥W∥1, ∀u ∈ H2(Ω)d ∩X, ∀T,W ∈M,
c∥u∥2∥T∥1∥W∥0, ∀u ∈ H2(Ω)d ∩X, ∀T,W ∈M,
c∥u∥1∥T∥2∥W∥0, ∀T ∈ H2(Ω)d ∩X, ∀u ∈ X,∀W ∈M.

In order to consider the regularity and error estimations of the numerical
solution, there still need to introduce some regularity assumptions about initial
conditions, the right-hand terms and weak solutions.

Assumption 1. Suppose the initial conditions and the right-hand terms sat-
isfies the regularity:{

u0 ∈ H2(Ω)d ∩ V, T 0, C0 ∈ H2(Ω) ∩X,
f, γ, η ∈ L∞(0, T ;L2(Ω)d) ∩ L2(0, T ;H1(Ω)d).

(5)

Based on the general energy technique and the argument of regularity prop-
erty of solution [20], the following regularity assumption is reasonable.

Assumption 2. Let (u(t), p(t), T (t), C(t)) be the week solution of (4). Then
there exists some positive constant M such that the solution of (1) satisfies:

(6)



sup
t∈[0,T ]

{
∥u(t)∥2 + ∥T (t)∥2 + ∥C(t)∥2

+∥ut(t)∥0 + ∥Tt(t)∥0 + ∥Ct(t)∥0 + ∥p(t)∥0
}
≤ M,∫ T

0

∥∇ut(t)∥20dt+
∫ T

0

∥∇Tt(t)∥20dt+
∫ T

0

∥∇Ct(t)∥20dt ≤ M,∫ T

0

∥utt(t)∥2−1dt+

∫ T

0

∥Ttt(t)∥2−1dt+

∫ T

0

∥Ctt(t)∥2−1dt ≤ M.

Next, let present the following discrete Gronwall’s inequality [19].

Lemma 2.1. Let {yn}, {hn}, {gn}, {fn} be nonnegative time dependent se-
quences satisfying. B and C∗ are given constants, ∀m = 1, 2, . . ., N = [Tτ ],

ym + τ

m∑
n=0

hn ≤ B + τ

m∑
n=0

(gnyn + fn), with

N∑
n=0

gn ≤ C∗.

Assume τgn < 1 and let σ = max
0≤n≤N

(1− τgn)−1. Then there exist:

ym + τ

m∑
n=0

hn ≤ exp(σM)
(
B + τ

m∑
n=0

fn), ∀m ≤ N .
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3. Semi-discrete Gauge-Uzawa scheme

The first order semi-discrete Gauge-Uzawa method can be listed as:

Algorithm 1: Suppose u0, T 0 and C0 are given and let s0 = 0, assume that
un, Tn and Cn are known. Then find ũn+1, un+1, pn+1, Tn+1, Cn+1 from the
following steps:

Step 1. Find ũn+1, Tn+1, Cn+1 as the solution of

ũn+1−un

τ − ν∆ũn+1 + (un · ∇)ũn+1 + λũn+1 + ν∇sn
= fn+1 +RagT

n+1 −RsgC
n+1,

Tn+1−Tn

τ −∆Tn+1 + (un · ∇)Tn+1 = γn+1,

Cn+1−Cn

τ −∆Cn+1 + (un · ∇)Cn+1 = ηn+1 + LΨ(Tn+1)− κCn+1,

ũn+1|∂Ω = 0, Tn+1|∂Ω = 0, Cn+1|∂Ω = 0,

(7)

where

fn+1 =
1

τ

∫ tn+1

tn

f(t)dt, γn+1 =
1

τ

∫ tn+1

tn

γ(t)dt, ηn+1 =
1

τ

∫ tn+1

tn

η(t)dt.

Step 2. Find ρn+1 as the solution of{
−∆ρn+1 = ∇ · ũn+1,

∂nρ
n+1|∂Ω = 0.

(8)

Step 3. Update un+1 and sn+1 by{
un+1 = ũn+1 +∇ρn+1,

sn+1 = sn −∇ · ũn+1.
(9)

Remark 3.1. ũn+1 is eliminated from the first equation of (7) by using (9) and
∇ · un+1 = 0, un+1 · n|∂Ω = 0, so pressure approximation can be updated by
using the following formula

(10) pn+1 = −1

τ
ρn+1 + νsn+1.

3.1. Stability and error analysis

Next, stability analysis of velocities, temperature and salt concentration for
Algorithm 1 are derived.

3.1.1. Stability.

Theorem 3.2. For all 1 ≤ N ≤ N − 1, the numerical solution of Algorithm 1
is unconditionally stable

∥ũN∥20 + ∥TN∥20 + ∥CN∥20 + ντ∥sN∥20(11)

+

N−1∑
n=0

(∥ũn+1 − un∥20 + ∥Tn+1 − Tn∥20 + ∥Cn+1 − Cn∥20)
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+ τ

N−1∑
n=0

(ν∥∇ũn+1∥20 + ∥∇Tn+1∥20 + ∥∇Cn+1∥20)

≤ ∥ũ0∥20 + ∥T 0∥20 + ∥C0∥20 + ντ∥s0∥20

+ c

∫ T

0

(∥f(t)∥20 + ∥γ(t)∥20 + ∥η(t)∥20)dt+ cτL.

Proof. Taking the inner product of (7) with 2τ ũn+1, 2τTn+1 and 2τCn+1 to
have 

∥Tn+1∥20 − ∥Tn∥20 + ∥Tn+1 − Tn∥20 + 2τ∥∇Tn+1∥20
= 2τ(γn+1, Tn+1) ≤ 2τ∥Tn+1∥0∥γn+1∥0

≤ τ

2
∥∇Tn+1∥20 + c

∫ tn+1

tn

∥γ(t)∥20dt,

∥Cn+1∥20 − ∥Cn∥20 + ∥Cn+1 − Cn∥20 + 2τ∥∇Cn+1∥20 + 2κτ∥Cn+1∥20
= 2τ(ηn+1, Cn+1) + 2τ(LΨ(Tn+1), Cn+1)

≤ τ

2
∥∇Cn+1∥20 + cτL+ c

∫ tn+1

tn

∥η(t)∥20dt,

(12)

∥ũn+1∥20 − ∥un∥20 + ∥ũn+1 − un∥20(13)

+ 2τ∥∇ũn+1∥20 + 2τλ∥ũn+1∥20 + 2τ(∇sn, ũn+1)

= 2τ(fn+1, ũn+1) + 2τRag(T
n+1, ũn+1)− 2τRsg(C

n+1, ũn+1).

It can be derived from (8) that

∥un∥20 = (un, un)(14)

= (ũn +∇ρn, un)
= (ũn, un)

= (ũn, ũn +∇ρn) = ∥ũn∥20 − ∥∇ρn∥20.

Due to (13), it can be deduced that

∥ũn+1∥20 − ∥ũn∥20 + ∥ũn+1 − un∥20 + 2τ∥∇ũn+1∥20 + 2τλ∥ũn+1∥20(15)

+ ∥∇ρn∥20
= 2τ(fn+1, ũn+1) + 2τRag(T

n+1, ũn+1)− 2τRsg(C
n+1, ũn+1)

+ 2τ(sn,∇ · ũn+1)

=

4∑
n=1

Ai.
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From the Cauchy-Schwarz inequality and (9), it can be derived that

A1 = 2ντ(sn, sn+1 − sn) = −ντ(∥sn+1∥20 − ∥sn − sn+1∥20 − ∥sn∥20)
≤ −ντ(∥sn+1∥20 − ∥sn∥20) + ντ∥∇ũn+1∥20,

A2 = 2τ(fn+1, ũn+1) ≤ 2τ∥fn+1∥0∥ũn+1∥0

≤ ντ

4
∥ũn+1∥20 + c

∫ tn+1

tn

∥f(t)∥20dt,

A3 ≤ 2τRag|(Tn+1, ũn+1)| ≤ ντ

4
∥ũn+1∥20 +

τ

2
∥∇Tn+1∥20,

A4 ≤ 2τRsg|(Cn+1, ũn+1)| ≤ ντ

4
∥ũn+1∥20 +

τ

2
∥∇Cn+1∥20.

(16)

Adding up (12), (13) and (15) for n = 0, 1, . . . , N − 1, noting that (14) the
proof is finished. □

3.1.2. Error analysis. Now let prove the optimal error estimates of presented
method. In order to simplify the descriptions, let introduce the error symbols:

en+1
u = u(tn+1)− un+1, ẽn+1

u = u(tn+1)− ũn+1,

en+1
C = C(tn+1)− Cn+1, en+1

T = T (tn+1)− Tn+1.

Theorem 3.3. Suppose Assumptions 1 and Assumptions 2 hold. Then, for all
1 ≤ N ≤ N − 1, there exists

∥eNu ∥20 + ∥eNT ∥20 + ∥eNC ∥20(17)

+

N−1∑
n=0

(∥ẽn+1
u − enu∥20 + ∥en+1

T − enT ∥20 + ∥en+1
C − enC∥20)

+ τ

N−1∑
n=0

(ν∥∇ẽn+1
u ∥20 + ∥∇en+1

T ∥20 + ∥∇en+1
C ∥20) ≤ cτ2.

Proof. By expanding the exact solutions u(t), T (t), C(t) through Taylor for-
mulas, it can be obtained

u(tn+1)− u(tn)

τ
− ν∆u(tn+1) + λu(tn+1) + (u(tn+1) · ∇)u(tn+1)(18)

+∇p(tn+1) = fn+1 +RagT (tn+1)−RsgC(tn+1) +Rn+1
u ,

T (tn+1)−T (tn)
τ

− χT∆T (tn+1)+(u(tn+1) · ∇)T (tn+1) = γn+1+Rn+1
T ,(19)

C(tn+1)− C(tn)

τ
− χC∆C(tn+1) + (u(tn+1) · ∇)C(tn+1) + κC(tn+1)(20)

= ηn+1 +Rn+1
C + LΨ(T (tn+1)),

(21) ∇ · u(tn+1) = 0,
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where

Rn+1
u =

1

τ

∫ tn+1

tn

(t− tn)utt(t)dt, Rn+1
T =

1

τ

∫ tn+1

tn

(t− tn)Ttt(t)dt,

Rn+1
C =

1

τ

∫ tn+1

tn

(t− tn)Ctt(t)dt.

Subtracting the first, second and third equations of (7) from (18), (19) and
(20), respectively, it can be obtained

ẽu(tn+1)− eu(tn)

τ
− ν∆ẽu(tn+1) + λẽu(tn+1)(22)

= [(un · ∇)ũn+1 − (u(tn+1) · ∇)u(tn+1)]

+ ν∇sn −∇p(tn+1) +Rage
n+1
T −Rsge

n+1
C +Rn+1

u ,

(23) en+1
T − enT

τ
−∆en+1

T = [(un · ∇)Tn+1 − (u(tn+1) · ∇)T (tn+1)] +Rn+1
T ,

en+1
C − enC

τ
−∆en+1

C + κen+1
C = [(un · ∇)Cn+1 − (u(tn+1) · ∇)C(tn+1)](24)

+Rn+1
C + L(Ψ(T (tn+1))−Ψ(Tn+1)).

In addition, it can be concluded from (21) and Remark 3.1 that

(25) ∇ · en+1
u = 0.

Taking the inner product of (22) with 2τ ẽn+1
u and using Lemma 2.1 to have

∥ẽn+1
u ∥20 − ∥enu∥20 + ∥ẽn+1

u − enu∥20 + λ∥ẽn+1
u ∥20 + ν∥∇ẽn+1

u ∥21(26)

= − 2τb(u(tn+1)− u(tn), u(tn+1), ẽ
n+1
u )− 2τb(enu, u(tn+1), ẽ

n+1
u )

− 2τb(un, ẽn+1
u , ẽn+1

u ) + 2ντ(∇sn, ẽn+1
u )− 2τ(∇p(tn+1), ẽ

n+1
u )

+ 2τ(en+1
T , ẽn+1

u ) + 2τ(en+1
C , ẽn+1

u ) + 2τ(Rn+1
u , ẽn+1

u ) =

8∑
n=1

Bi.

According to (8) and (9), it can be derived that

(27) ∥ẽn+1
u ∥20 = ∥∇ρn+1∥20 + ∥en+1

u ∥20.

Now each term in the right hand side of (26) is bounded independently,

B1 = 2τb(u(tn+1)− u(tn), ẽ
n+1
u , u(tn+1))

≤ cτ∥u(tn+1)− u(tn)∥0∥∇ẽn+1
u ∥0∥u(tn+1)∥2

≤ cτ∥∇ẽn+1
u ∥0∥

∫ tn+1

tn

|ut|dt∥0 ≤ τν

9
∥∇ẽn+1

u ∥20 + cτ2
∫ tn+1

tn

∥ut∥20dt,

B2 = 2τb(enu, ẽ
n+1
u , u(tn+1))

≤ c∥enu∥0∥∇ẽn+1
u ∥0∥u(tn+1)∥2 ≤ cτ∥enu∥20 +

τν

9
∥∇ẽn+1

u ∥20,
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B3 = 2τb(un, ẽn+1
u , ẽn+1

u ) = 0,

B4 = 2ντ(∇sn, ẽn+1
u )

= −2ντ(sn,∇ · (u(tn+1)− ũn+1))

= 2ντ(sn, sn − sn+1)

≤ cτ(∥sn∥20 − ∥sn+1∥20) +
τν

9
∥∇ẽn+1

u ∥20,

B5 = −2τ(∇p(tn+1), ẽ
n+1
u )

= 2ντ(∇p(tn+1),∇ρn+1)

≤ cτ∥∇p(tn+1)∥0∥∇ρn+1∥0 ≤ ∥∇ρn+1∥20 + cτ2
∫ tn+1

tn

∥∇p(tn+1)∥20dt,

B6 = 2τ(en+1
T , ẽn+1

u )

≤ τ

4
∥∇en+1

T ∥20 +
τν

9
∥∇ẽn+1

u ∥20,

B7 = 2τ(en+1
C , ẽn+1

u )

≤ τ

4
∥∇en+1

C ∥20 +
τν

9
∥∇ẽn+1

u ∥20,

B8 = 2τ(Rn+1, ẽn+1
u )

≤ cτ2
∫ tn+1

tn

∥utt∥2−1dt+
τν

9
∥∇ẽn+1

u ∥20.

Taking the inner product of (23), (24) in Step 1 with 2τen+1
T and 2τen+1

C ,
separately, and using Lemma 2.1 to have

∥en+1
T ∥20 − ∥enT ∥20 + ∥en+1

T − enT ∥20 + 2τ∥∇en+1
T ∥20(28)

= 2τb(u(tn+1)− u(tn), T
n+1, en+1

T ) + 2τb(enu, T (tn+1), e
n+1
T )

− 2τb(u(tn+1), e
n+1
T , en+1

T ) + 2τ(Rn+1
T , en+1

T )

=

4∑
n=1

Di,

and

∥en+1
C ∥20 − ∥enC∥20 + ∥en+1

C − enC∥20 + 2τ∥∇en+1
C ∥20 + 2κτ∥en+1

C ∥20(29)

= 2τb(u(tn+1)− u(tn), C(tn+1), e
n+1
C ) + 2τb(enu, C(tn+1), e

n+1
C )

− 2τb(u(tn+1), e
n+1
C , en+1

C ) + 2τ(Rn+1
C , en+1

C )

+ 2τ(L(Ψ(T (tn+1))−Ψ(Tn+1)), en+1
C ) =

5∑
n=1

Ei.
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Using Young inequality, Cauchy inequalities and Sobolev imbedding theorems,
it can be derived that

D1 = 2τb(u(tn+1)− u(tn), T (tn+1), e
n+1
T )

≤ cτ∥u(tn+1)− u(tn)∥0∥∇en+1
T ∥0∥u(tn+1)∥2

≤ cτ∥∇en+1
T ∥0∥

∫ tn+1

tn

utdt∥0 ≤ τ

5
∥∇en+1

T ∥20 + cτ2
∫ tn+1

tn

∥ut∥20dt,

D2 = 2τb(enu, T (tn+1), e
n+1
T )

≤ cτ∥enu∥0∥∇en+1
T ∥0∥T (tn+1)∥2

≤ cτ∥∇en+1
T ∥0∥

∫ tn+1

tn

utdt∥0 ≤ τ

5
∥∇en+1

T ∥20 + cτ2
∫ tn+1

tn

∥ut∥20dt,

D3 = −2τb(u(tn+1), e
n+1
T , en+1

T ) = 0,

D4 = 2τ(Rn+1
T , en+1

T )

≤ τ

5
∥∇en+1

T ∥20 + cτ∥Rn+1
T ∥2−1 ≤ τ

5
∥∇en+1

T ∥20 + cτ2
∫ tn+1

tn

∥Ttt∥2−1dt.

Similarly

E1 = 2τb(u(tn+1)− u(tn), C(tn+1), e
n+1
C )

≤ cτ∥∇en+1
C ∥0∥

∫ tn+1

tn

|ut|dt∥0 ≤ τ

5
∥∇en+1

C ∥20 + cτ2
∫ tn+1

tn

∥ut∥20dt,

E2 = 2τb(enu, C(tn+1), e
n+1
C )

≤ cτ∥enu∥0∥∇en+1
C ∥0∥C(tn+1)∥2

≤ cτ∥∇en+1
C ∥0∥

∫ tn+1

tn

|ut|dt∥0 ≤ τ

5
∥∇en+1

C ∥20 + cτ2
∫ tn+1

tn

∥ut∥20dt,

E3 = −2τb(u(tn+1), e
n+1
C , en+1

C ) = 0,

E4 = 2τ(Rn+1
C , en+1

C )

≤ τ

5
∥∇en+1

C ∥20 + cτ∥Rn+1
C ∥2−1 ≤ τ

5
∥∇en+1

C ∥20 + cτ2
∫ tn+1

tn

∥Ctt∥2−1dt,

E5 = 2Lτ(Ψ(T (tn+1)−Ψ(Tn+1), en+1
C )

≤ 2Lτ∥T (tn+1)− Tn+1∥0∥∇en+1
C ∥0 ≤ cτ∥∇en+1

T ∥20 +
τ

5
∥∇en+1

C ∥20,

from (26), (27), (28) and (29), it can be obtained

∥ẽn+1
u ∥20 − ∥enu∥20 + ∥ẽn+1

u − enu∥20 + ντ∥∇ẽn+1
u ∥21 + ντ(∥sn+1∥20 − ∥sn∥20)(30)

+ ∥en+1
T ∥20 − ∥enT ∥20 + ∥en+1

C − enT ∥20 + cτ∥∇en+1
T ∥20

+ ∥en+1
C ∥20 − ∥enC∥20 + ∥en+1

C − enC∥20 + cτ∥∇en+1
C ∥20
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≤ cτ2
∫ tn+1

tn

(∥∇p(t)∥20 + ∥ut∥20 + ∥utt∥2−1 + ∥Ttt∥2−1 + ∥Ctt∥2−1)dt

+ cτ∥enu∥20.

Summing up (30) n = 0, 1, . . . , N − 1, and using the regularity properties,
stability and applying Lemma 2.1, then the proof is finished. □

Theorem 3.4. Suppose Assumption 1, Assumption 2 hold. Then for all N =
1, 2, . . . ,N − 1, there exists

(31) τ

N∑
n=0

∥p(tn+1)− pn+1∥20 ≤ cτ.

Proof. By substituting (10) into the first equation of (7), it can be obtained

un+1 − un

τ
− ν∆ũn+1 + (un · ∇)ẽn+1

u +∇pn+1 − ν(∇sn −∇sn+1)(32)

= fn+1 +RaT
n+1 −RsC

n+1.

Now subtract (32) from (18), which can be obtained

en+1
u − enu

τ
+ ν∆ẽn+1

u +∇en+1
p(33)

= [(un · ∇)ũn+1 − (u(tn+1) · ∇)u(tn+1)]− ν(∇sn+1 −∇sn)
+Rae

n+1
T −Rse

n+1
C +Rn+1

u .

Taking the inner product of (33) with v ∈ H1
0 (Ω), it can be derived that

(34) (en+1
p ,∇ · v) =

7∑
1

Ki,

where

K1 = (
∥enu − en+1

u ∥0
τ

, v) ≤ cτ∥enu − en+1
u ∥0∥∇v∥0,

K2 = ν(∆ẽn+1
u , v) ≤ cν∥∇ẽn+1

u ∥0∥∇v∥0,
K3 = (u(tn+1 − u(tn) + enu, u(tn+1), v) + (u(tn)− enu, ẽ

n+1
u , v)

≤ (∥u(tn+1)− u(tn)∥0 + ∥enu∥0)∥u(tn+1)∥2∥∇v∥0
+ (∥u(tn)∥1 + ∥enu∥1)∥ẽn+1

u ∥0∥∇v∥0,
K4 = ν(sn+1 − sn,∇ · v) = ν(∇ · ẽn+1

u ,∇ · v)
≤ cν∥∇ẽn+1

u ∥0∥∇v∥0,
K5 = Ra(e

n+1
T , v) ≤ c∥en+1

T ∥0∥∇v∥0,
K6 = −Rs(e

n+1
C , v) ≤ c∥en+1

C ∥0∥∇v∥0,
K7 = (Rn+1

u , v) ≤ cτ∥utt∥−1∥∇v∥0.
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Combining the above inequalities, it can be obtained that

β∥en+1
p ∥0 ≤ c(

1

τ
∥enu − en+1

u ∥0 + ν∥∇ẽn+1
u ∥0 + τ∥utt∥−1)(35)

+ c(∥u(tn+1)− u(tn)∥0 + ∥enu∥0).

According to the conclusion above, the proof of (31) is finished. □

4. Fully discrete Gauge-Uzawa scheme

In this section, the first-order scheme of the Gauge-Uzawa methods for the
DBTC are introduced. Let Kh = {K} be a uniformly regular family of tri-
angulation of Ω and define the mesh size h = max

K∈Kh

{diam(K)}. The spatial

approximation of velocity, pressure, temperature and salt concentration are ap-
plied by mixed element method with (Xh, Yh,Mh,Mh) ⊂ (X,Y,M,M). The
following discrete subspaces are defined:

Xh =
{
vh ∈ X ∩ C0(Ω)d : vh|K ∈ [P1(K)⊕ span {b}]d,∀K ∈ Kh

}
,

Yh =
{
qh ∈ Y ∩ C0(Ω) : qh|K ∈ P1(K),∀K ∈ Kh

}
,

Mh =
{
sh ∈ Y ∩ C0(Ω) : sh|K ∈ P1(K),∀K ∈ Kh

}
.

The first order fully discrete Gauge-Uzawa scheme is as follows:

Algorithm 2: Suppose u0h, T
0
h , C

0
h are given and let s0h = 0, assume that unh,

Tn
h and Cn

h are known, for all vh ∈ Xh, ψh and qh ∈ Yh, zh ∈ Mh. Then find

ũn+1
h , un+1

h , pn+1
h , Tn+1

h , Cn+1
h from the following steps:

Step 1. Find ũn+1
h , Tn+1

h and Cn+1
h as the solution of

(
ũn+1
h −un

h

τ , vh) + ν(∇ũn+1
h ,∇vh) + λ(ũn+1

h , vh) + ((unh · ∇)ũn+1
h , vh)

= (fn+1, vh) + (RagT
n+1
h , vh)− (RsgC

n+1, vh) + ν(snh,∇ · vh),
(
Tn+1
h −Tn

h

τ , zh) + (∇Tn+1
h ,∇zh) + ((unh · ∇)Tn+1

h , zh) = (γn+1, zh),

(
Cn+1

h −Cn
h

τ , zh) + (∇Cn+1
h ,∇zh) + ((unh · ∇)Cn+1

h , zh)
= (ηn+1, zh) + (LΨ(Tn+1

h ), zh)− (κCn+1
h , zh),

ũn+1
h |∂Ω = 0, Tn+1

h |∂Ω = 0, Cn+1
h |∂Ω = 0.

(36)

Step 2. Find ρn+1
h as the solution of

(37) (∇ρn+1
h ,∇ψh) = (∇ · ũn+1

h ,∇ψh).

Step 3. Update un+1
h , sn+1

h by{
un+1
h = ũn+1

h +∇ρn+1
h ,

(sn+1
h , qh) = (snh, qh)− (∇ · ũn+1

h , qh).
(38)

Step 4. Update pn+1
h by

(39) pn+1
h = −1

τ
ρn+1
h + νsn+1

h .
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Theorem 4.1. For all 1 ≤ N ≤ N − 1, the numerical solution of Algorithm 2
is unconditionally stable

∥ũNh ∥20 + ∥TN
h ∥20 + ∥CN

h ∥20 + ντ∥sNh ∥20(40)

+

N−1∑
n=0

(∥ũn+1
h − unh∥20 + ∥Tn+1

h − Tn
h ∥20 + ∥Cn+1

h − Cn
h∥20)

+ τ

N−1∑
n=0

(ν∥∇ũn+1
h ∥20 + ∥∇Tn+1

h ∥20 + ∥∇Cn+1
h ∥20)

≤ ∥u0h∥20 + ∥T 0
h∥20 + ∥C0

h∥20 + ντ∥s0h∥20

+ c

∫ T

0

(∥f(t)∥20 + ∥γ(t)∥20 + ∥η(t)∥20)dt+ cτL.

Proof. Taking the inner product of (36) with 2τ ũn+1
h , 2τTn+1

h and 2τCn+1
h to

have

(41)



∥Tn+1
h ∥20 − ∥Tn

h ∥20 + ∥Tn+1
h − Tn

h ∥20 + 2τ∥∇Tn+1
h ∥20

= 2τ(γn+1, Tn+1
h )

≤ 2τ∥Tn+1
h ∥0∥γn+1∥0

≤ τ

2
∥∇Tn+1

h ∥20 + c

∫ tn+1

tn

∥γ(t)∥20dt,

∥Cn+1
h ∥20 − ∥Cn

h∥20 + ∥Cn+1
h − Cn

h∥20 + 2τ∥∇Cn+1
h ∥20 + 2κτ∥Cn+1

h ∥20
= 2τ(ηn+1, Cn+1

h ) + 2τ(LΨ(Tn+1
h ), Cn+1

h )

≤ τ

2
∥∇Cn+1

h ∥20 + cτL+ c

∫ tn+1

tn

∥η(t)∥20dt,

∥ũn+1
h ∥20 − ∥unh∥20 + ∥ũn+1

h − unh∥20(42)

+ 2τ∥∇ũn+1
h ∥20 + 2τλ∥ũn+1

h ∥20 + 2τ(∇snh, ũn+1
h )

= 2τ(fn+1, ũn+1
h ) + 2τRa(T

n+1
h , ũn+1

h )− 2τRs(C
n+1
h , ũn+1

h ).

It can be obtained from (37) and (38) that

∥unh∥20 = (unh, u
n
h) = (ũnh +∇ρnh, unh)(43)

= (ũnh, u
n
h) = (ũnh, ũ

n
h +∇ρnh) = ∥ũnh∥20 − ∥∇ρnh∥20.

So (42) becomes

∥ũn+1
h ∥20 − ∥ũnh∥20 + ∥ũn+1

h − unh∥20(44)

+ 2τ∥∇ũn+1
h ∥20 + 2τλ∥ũn+1

h ∥20 + ∥∇ρnh∥20
= 2τ(fn+1, ũn+1

h ) + 2τRa(Tn+1
h , ũn+1

h )
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− 2τRs(Cn+1
h , ũn+1

h ) + 2τ(snh,∇ · ũn+1
h ) =

4∑
n=1

Fi.

From the Cauchy-Schwarz inequality and (9), there exists

F1 = 2ντ(snh, s
n+1
h − snh)

= −ντ(∥sn+1
h ∥20 − ∥snh − sn+1

h ∥20 − ∥snh∥20)
≤ −ντ(∥sn+1

h ∥20 − ∥snh∥20) + ντ∥∇ũn+1
h ∥20,

F2 = 2τ(fn+1, ũn+1
h )

≤ 2τ∥fn+1∥0∥ũn+1
h ∥0

≤ ντ

4
∥ũn+1

h ∥20 + c

∫ tn+1

tn

∥f(t)∥20dt,

F3 = 2τ(RaTn+1
h , ũn+1

h )

≤ ντ

4
∥ũn+1

h ∥20 +
τ

2
∥∇Tn+1

h ∥20,

F4 = −2τ(RsCn+1
h , ũn+1

h )

≤ ντ

4
∥ũn+1

h ∥20 +
τ

2
∥∇Cn+1

h ∥20.

Adding (40) and (41), then sum up n = 0, 1, . . . , N − 1, the proof of (40) is
finished. □

5. Numerical experiments

In this section, some numerical experiments are implemented to verify the
accuracy of the Gauge-Uzawa methods for the DBTC. In the numerical exper-
iments, all computational domain are set as Ω = [0, 1]d. And the P1b-P1-P1-P1

finite element pairs are selected to approximate the velocity, pressure, temper-
ature and salt concentration, respectively. All the numerical experiments are
implemented by using the public domain finite element software FreeFEM++
[6].

5.1. Convergence rate verification

In this subsection, the following symbols are used to denote the relative
errors in the tables.

Eu,h
0 =

∥u− uh∥0
∥u∥0

, Eu,h
1 =

∥u− uh∥1
∥u∥1

, Ep,h
0 =

∥p− ph∥0
∥p∥0

,

ET,h
0 =

∥T − Th∥0
∥T∥0

, ET,h
1 =

∥T − Th∥1
∥T∥1

, EC,h
0 =

∥C − Ch∥0
∥C∥0

,

EC,h
1 =

∥C − Ch∥1
∥C∥1

.
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In the following experiment, the following physical parameters are set, λ =
Rs = Ra = κ = L = 1. In the 2D case, the problem with the following
analytical solutions are considered,

(u1, u2) = (−sin(πy)sin2(πx)cos(πy)sin(t), sin(πx)sin2(πy)cos(πx)sin(t)),

p = cos(πy)sin(πx)sin(t),

T = (−sin(πy)sin2(πx)cos(πy) + sin(πx)sin2(πy)cos(πx))sin(t),

C = (−cos(πy)sin2(πx)sin(πy)− cos(πx)sin(πx)sin2(πy))sin(t).

Table 1. The Gauge-Uzawa method for 2D DBTC

1
h Eu,h

0 rate Eu,h
1 rate Ep,h

0 rate ET,h
0 rate ET,h

1 rate EC,h
0 rate EC,h

1 rate

4 3.91E-01 0 5.60E-01 0 1.51E-00 0 3.42E-01 0 4.63E-01 0 5.68E-01 0 6.97E-01 0
8 1.25E-01 1.64 3.01E-02 0.90 0.61E-01 1.30 0.10E-01 1.78 2.30E-01 1.01 0.21E-01 1.43 3.87E-01 0.85
16 3.28E-02 1.93 1.52E-01 0.99 2.00E-01 1.61 2.59E-02 1.95 1.14E-01 1.01 5.90E-02 1.84 1.96E-01 0.98
32 8.28E-03 1.99 7.58E-02 1.00 6.70E-02 1.58 6053E-03 1.99 5.67E-02 1.00 1.52E-04 1.96 9.81E-02 1.00
64 2.08E-03 2.00 3.78E-02 1.00 2.31E-02 1.53 1.63E-03 2.00 2.83E-02 1.00 3.82E-03 1.99 4.91E-02 1.00
128 5.21E-04 2.00 1.89E-02 1.00 8.11E-03 1.51 4.10E-04 2.00 1.42E-02 1.00 9.59E-04 2.00 2.46E-02 1.00

Similarly, in the 3D case, the problem with the following analytical solutions
are considered,

(u1, u2, u3) = ((y4 + z2)cos(t), (z4 + x2)cos(t), (x4 + y2)cos(t)),

p = (2x− 1)(2y − 1)(2z − 1)cos(t),

T = (0.5 + 0.5cos(xyz))cos(t),

C = (0.3 + 0.3exyz)cos(t).

Table 2. The Gauge-Uzawa method for 3D DBTC

1
h Eu,h

1 rate Eu,h
0 rate Ep,h

0 rate ET,h
0 rate ET,h

1 rate EC,h
0 rate EC,h

1 rate

4 2.08E-01 5.70E-02 1.11E-00 3.66E-03 5.30E-01 8.41E-03 3.86E-01
8 1.05E-01 0.98 1.45E-02 1.98 5.18E-00 1.11 9.16E-04 2.00 2.63E-01 1.00 2.03E-03 2.05 1.91E-01 1.02
12 7.02E-02 1.00 6.43E-03 2.00 2.65E-01 1.65 4.07E-04 2.00 1.75E-01 1.00 8.94E-04 2.02 1.27E-01 1.00
16 5.27E-02 1.00 3.62E-02 2.00 1.70E-01 1.54 2.29E-04 2.00 1.31E-01 1.00 5.01E-04 2.01 9.52E-02 1.01

The numerical results are listed in Table 1 and Table 2. It can be seen
that the presented method can get a linear convergence rate for the computed
velocity, temperature and salt concentration in the H1(Ω)d semi-norm, and
about 1.5 convergence order for the computed pressure in the L2(Ω) norm.
Moreover, it is easy to see that a quadratic convergence rate both for the
computed velocity, temperature and salt concentration in the L2(Ω) norm,
which verifies the theoretical results.
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5.2. The porous cavity problem

Figure 1 shows the computational domain with boundary conditions. The
Dirichlet boundary conditions are considered for the presented method, its are
still valid for Neumann boundary conditions. The no-slip boundary conditions
are imposed for the velocity. The upper and lower boundary conditions of
temperature and salt concentration are ∂T/∂n = 0 and ∂C/∂n = 0. The
temperature and salt concentration are kept at TR, CR for right and TL, CL

for left vertical walls with TR < TL, CR < CL, respectively. TR = CR = −1
and TL = CL = 1 are considered.

Figure 1. The schematic diagram of the computational do-
main with its boundary conditions.

In Figure 2, LΨ(T ) = LT is considered. The isolines of temperature, salt
concentration, pressure, and arrow plot of velocity for λ = 103, Rs = 10, at
L=1, 10, and 100, are drawn respectively. It can be easily seen from Figure 2.
As the chemical equilibrium coefficient increases, the effect of temperature on
salt concentration becomes obvious, and the upper part of the square cavity has
a high concentration, but has little effect on velocity, pressure and temperature.

5.3. The partitioned square enclosure problem

In order to verify the effectiveness of the method, the partitioned square en-
closure problem is tested. This experiment is an important practical problem,
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Figure 2. Isolines of temperature, salt concentration, pres-
sure and arrow plot of velocity for λ = 103, Ra = 103, Rs = 10,
at L = 1, 10, 102, from top to bottom.

which has been investigated in [3, 7]. The geometry and the boundary condi-
tions are that left and right walls are kept at TL = CL = 0 and TR = CR = 1,
respectively. The remaining walls are kept ∂T/∂n = ∂C/∂n = 0. And there
are two rectangular insulators in this square cavity. Though its geometry and
boundary conditions are simple, it has characteristics of a very complex flow
which occurs in many practical engineering applications.
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The length and thickness of the insulators to 0.25 and 0.1 are set, respec-
tively. And considering three different placement locations. The first placement
of x = 0.5. Further, in the other two placed mode, the insulators are offset
to the left x = 0.25 or at the right x = 0.75. At this point L = 1, Rs = 10,
λ = 103, Ra = 103. Figure 3 shows that the arrow plot of velocity, the contour
lines of pressure, temperature and salt concentration.

Figure 3 shows that there is a vortex in the partition-hot wall region for
the left partition and in the partition-cold wall region for the right partition,
respectively. For the intermediate partition two small vortices can be found.
Moreover, for the left partition, the flow coming off the hot wall is cooled by
the perfectly conducting end wall and the partition. For the right partition, the
heated flow is confined to the partition-hot wall region, because of the heated
flow moving up the hot wall and the cooled flow moving down the hot wall.
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5.4. A square enclosure with a circular cylinder problem

The final experiment is an important practical problem. In many engineering
applications, especially in relation to heat losses from thermal storage systems
such as solar collectors, nuclear reactor design, buildings and aircraft cabin
insulation, the problem is researched to find means to improve the insulating
properties of fluid layers. The computational domain consists of a square en-
closure with sides of length 1, within which two circular cylinders with radius
0.1 are located in the center of the square cavity. The cylinders are kept at
high temperature and salt concentration of Tin and Cin, while the walls of the
square enclosure are kept at low temperature and salt concentration of Tout
and Cout. Let Tin = Cin = 0.5, Tout = Cout = −0.5. Besides, no-slip boundary
conditions for the velocity on the whole boundary are imposed.
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Figure 3. Contour lines of temperature, salt concentration,
pressure, and arrow plot of velocity for λ = 103, Rs = 10,
A = 1 at Ra = 103, L = 1 from top to bottom.

In this test, λ = 102, 103, 104 and the other parameters Rs = 10, Ra = 104

are set. As seen from Figure 4, the arrow plot of velocity, contour lines of
temperature and salt concentration in the square cavity are always symmetric,
due to the boundary conditions. When λ = 104, two vortices appear on the
right side and left side of the cavity, respectively. Because of the difference
of the temperature and salt concentration, the left vortex and the right one
behave a counterclockwise recirculation and a clockwise recirculation, respec-
tively. Moreover, with the decrease of the value of λ, the permeability increases
and the resistance of the medium to the fluid decreases, which leads to these
vortices moving toward the top wall of the square cavity.

6. Conclusions

In this paper the Gauge-Uzawa methods are presented for the DBTC. In
the view of theoretical analysis, the presented methods only need to solve
linear, decoupled elliptic equations at each time. It is proved that first or-
der semi-discrete Gauge-Uzawa method is unconditionally stable and the error
estimations of velocity, temperature and salt concentration are given. Further-
more, the unconditionally stability of the first order fully discrete Gauge-Uzawa
method is deduced. Numerical experiments show that the Gauge-Uzawa meth-
ods are effective and the methods can also be used to simulate a simplified
porous cavity problem. There still need some more theoretical analysis and
modification to extend the presented methods to other concrete problems.
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Figure 4. Contour lines of temperature, salt concentration,
pressure and arrow plot of velocity (from top to bottom) with
λ = 102, λ = 103, and λ = 104 (from left to right), at Ra =
104, L = 1.

References
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