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SINGLE STEP REAL-VALUED ITERATIVE METHOD FOR

LINEAR SYSTEM OF EQUATIONS WITH COMPLEX

SYMMETRIC MATRICES

JingJing Cui, ZhengGe Huang, BeiBei Li, and XiaoFeng Xie

Abstract. For solving complex symmetric positive definite linear sys-
tems, we propose a single step real-valued (SSR) iterative method, which

does not involve the complex arithmetic. The upper bound on the spec-

tral radius of the iteration matrix of the SSR method is given and its
convergence properties are analyzed. In addition, the quasi-optimal pa-

rameter which minimizes the upper bound for the spectral radius of the
proposed method is computed. Finally, numerical experiments are given

to demonstrate the effectiveness and robustness of the propose methods.

1. Introduction

We consider the system of linear equations of the form

Az = b, A ∈ Cn×n and z, b ∈ Cn.(1.1)

Here, A = W + iT , and W,T ∈ Rn×n are real symmetric positive definite, and
z = x+iy, b = p+iq, the vectors x, y, p, q as all in Rn. Here and in the sequel, i
denotes the imaginary unit. We may encounter linear system of equations (1.1)
in many problems such as diffuse optical tomography [1], an FFT-based solu-
tion of certain time-dependent PDEs [9], quantum mechanics [17], molecular
scattering [15], structural dynamics [11], and lattice quantum chromodynamics
[12]. The reader can refer to [8] for more examples and additional references.

Due to the universal existence and significance of the complex symmetric
linear systems, several iteration methods have been presented to solve (1.1) in
recent years. In the remaining part of this article, we will introduce some ex-
isting iterative methods, which involve a positive parameter α. When both W
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and T are symmetric positive semi-definite with at least one of them being pos-
itive definite, some efficient iterative methods have been proposed. Recently,
based on the Hermitian and skew-Hermitian splitting (HSS) [6] method, Bai
et al. developed the modified HSS (MHSS) [2] iteration method to solve the
system of linear equations (1.1), which is unconditionally convergent to the ex-
act solution. Furthermore, by taking advantage of the parameter accelerating
strategy, Bai [5] presented the accelerated HSS (AHSS) iteration method. To
further speed up the convergence rate, Bai [14] gave the preconditioned MHSS
(PMHSS) [3] iteration method. Besides, there are also some other effective
iterative methods, the Lopsided PMHSS (LPMHSS) [14] iteration method, the
generalized PMHSS (GPMHSS) [10] iteration method, the efficient block split-
ting (PBS) [13] iteration method, the double-step scale splitting (DSS) [20]
iteration method, the double-step scale splitting real-valued (DSS) [19] itera-
tion method. The PMHSS [3], DSS [19] iteration methods can be described as
follows:

The PMHSS iterative method [3]: Give any initial vector z(0) ∈ Cn for
k = 0, 1, 2, . . . until the iterative sequence {z(k)} converges, and calculate the
following program{

(αV +W )z(k+
1
2 ) = (αV − iT )z(k) + b,

(αV + T )z(k+1) = (αV + iW )z(k+
1
2 ) − ib,

(1.2)

where α > 0, V is a symmetric positive definite matrix and I is the identity
matrix.

The iteration matrix for the PMHSS method is obtained as

L(V, α) = (αV + T )
−1

(αV + iW )(αV +W )
−1

(αV − iT ).

When V = W , one has

L(α) := L(W,α) =
α+ i

α+ 1
(αW + T )

−1
(αW − iT ).

The DSS iterative method [19]: Give any initial vector x(0), y(0) ∈ Rn

for k = 0, 1, 2, . . . until the iterative sequence (x(k)T , y(k)
T
)
T

converges, and
calculate the following program

[
αT +W 0

0 αT +W

] [
x(k+ 1

2 )

y(k+
1
2 )

]
=

[
αT T
−T αT

] [
x(k)

y(k)

]
+

[
p
q

]
,[

αW + T 0
0 αW + T

] [
x(k+1)

y(k+1)

]
=

[
αW −W
W αW

] [
x(k+ 1

2 )

y(k+
1
2 )

]
+

[
q
−p

]
,

(1.3)

where α > 0, and I is the identity matrix.
The iteration matrix for DSS method is as follows:

M(α) =

[
αW + T 0

0 αW + T

]−1 [
αW −W
W αW

] [
αT +W 0

0 αT +W

]−1 [
αT T
−T αT

]
.

If the matrices W and T are symmetric positive semi-definite, some efficient
iteration methods have been presented. Bai et al. [7] applied the HSS method
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to the preconditioned block linear systems and proposed the preconditioned
HSS (PHSS) iteration method to improve the convergence speed of the HSS
method. Besides, Wang et al. [18] developed the combination method of real
part and imaginary part (CRI) iteration method. The CRI iteration method
can be described as following:

The CRI iterative method [18]: Give any initial vector z(0) ∈ Cn for
k = 0, 1, 2, . . . until the iterative sequence {z(k)} converges, and calculate the
following program{

(αT +W )z(k+
1
2 ) = (α− i)Tz(k) + b,

(αW + T )z(k+1) = (α+ i)Wz(k+
1
2 ) − ib,

(1.4)

where α > 0, and I is the identity matrix.
The iteration matrix for the CRI method is

τ(α) = (α2 + 1)(αW + T )
−1

W (αT +W )
−1

.

Moreover, Shirilord and Dehghan designed the single step [16] iteration
method for solving positive semi-definite linear systems. The specific construc-
tion of the iterative method is as follows. Multiplying both sides of (1.1) by
−iα leads to

αTz = iαWz − iαb,(1.5)

then, adding Wz to both sides of the above equation yields that

(αT +W )z = (iα+ 1)Wz − iαb.(1.6)

Based on the above matrix splitting form, Shirilord and Dehghan [16] designed
the single iterative method as follows:

(αT +W )zk+1 = (iα+ 1)Wzk − iαb,(1.7)

where α > 0. In each step of the above iteration procedure, the method need
solve a linear system with nonsingular symmetric positive definite coefficient
matrix αT + W that can be determined numerically by iterative schemes or
exactly by direct algorithms. The method (1.7) can be reformulated as:

zk+1 = GSS(α)z
k +RSS(α)b,

where

GSS(α) = (iα+ 1)(αT +W )−1W,

and RSS(α) = −iα(αT +W )−1. Note that the matrix GSS(α) is the iteration
matrix of the method (1.7). Let

BSS(α) =
i

α
(αT +W ), CSS(α) =

i− α

α
W.

Then A = BSS(α) − CSS(α), and GSS(α) = BSS(α)
−1CSS(α), therefore the

matrix BSS(α) can be considered as a preconditioner for the coefficient matrix
A.
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It follows from the iterative scheme (1.7) that the single iterative method
involves the complex arithmetic, which may decrease its efficiency. In order
to overcome this shortcoming and improve its the computational efficiency, we
apply the real value acceleration technique in [4] to the single step iterative
method [16] and establish the single step real-valued (SSR) iteration method
to solve system of linear equations (1.1), which does not involve the complex
arithmetic. Moreover, we discuss the convergence properties of the proposed
method and give the quasi-optimal parameter minimizing the upper bound of
the spectral radius of the iteration matrix.

The rest of this paper is organized as follows. In Section 2, we introduce the
single step real-valued (SSR) iteration method for solving the system (1.1). The
convergence of the SSR method is investigated and the quasi-optimal parameter
minimizing the upper bound of the spectral radius of the iteration matrix is
given in Section 3. In Section 4, numerical examples are reported to examine
the effectiveness and robustness of the proposed method. Finally, we make
brief concluding remarks in Section 5.

Throughout the paper, we use sp(·) and ρ(·) to denote the set of eigenvalue
and spectral radius of the corresponding matrix, respectively. Moreover, the
Euclidean norm of a vector or a matrix is represented by ∥·∥2. Moreover the
symbols In and Im denote identity matrices by dimensions n and m, respec-
tively.

2. The single step real-valued (SSR) iteration method

In this section, we will develop a single step real-valued iteration method for
solving problem (1.1) by splitting the complex coefficient matrix into the real
and imaginary parts and using them simultaneously.

To this end, substituting z = x+ iy and b = p+ iq into (1.6), we can get

(αT +W )(x+ iy) = (iα+ 1)W (x+ iy)− iα(p+ iq).

After some calculations and transposition, it is easy to obtain that

(αT +W )x+ i(αT +W )y = W (x− αy) + iW (αx+ y) + αq − iαp.(2.1)

Comparing the real part and imaginary part on both sides of the above equa-
tion, we can derive a single step real-valued iterative method, abbreviated as
SSR iteration method.

The single step real-valued iterative method: Given any initial vector

x(0), y(0) ∈ Rn for k = 0, 1, 2, . . ., until the iterative sequence (x(k)T , y(k)
T
)
T

converges, and calculate the following program{
(αT +W )x(k+1) = W (x(k) − αy(k)) + αq,
(αT +W )y(k+1) = W (αx(k+1) + y(k))− αp,

(2.2)

where α is a given positive constant.
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After simple calculations, we can reformulate the SSR iteration scheme into
the following fixed-point equation(

x(k+1)

y(k+1)

)
= GSSR(α)

(
x(k)

y(k)

)
+RSSR(α)

(
p
q

)
,(2.3)

where

GSSR(α)

=
(

(αT +W )
−1

W −α(αT +W )
−1

W

α(αT +W )
−1

W (αT +W )
−1

W (αT +W )
−1

W − α2(αT +W )
−1

W (αT +W )
−1

W

)
and

RSSR(α) =

(
0 α(αT +W )

−1

−α(αT +W )
−1

α2(αT +W )
−1

W (αT +W )
−1

)
.

If let S = (αW− 1
2TW− 1

2 + In)
−1

, then GSSR(α) and RSSR(α) can be written
as

GSSR(α) =

(
W− 1

2 0

0 W− 1
2

)(
S −αS

αS2 S − α2S2

)(
W

1
2 0

0 W
1
2

)
(2.4)

and

RSSR(α) =

(
W− 1

2 0

0 W− 1
2

)(
0 αS

−αS α2S2

)(
W− 1

2 0

0 W− 1
2

)
.

Note that the matrix GSSR(α) is an iteration matrix of the SSR iteration
method.

From the iterative scheme (2.2), we can derive the following algorithmic
version of the SSR iteration method.

Algorithm 2.1. The algorithm representation of the SSR iteration method:
Step 1: Calculate t(k) = W (x(k) − αy(k)) + αq;
Step 2: Solve (αT +W )x(k+1) = t(k);
Step 3: Calculate s(k) = W (αx(k+1) + y(k))− αp;
Step 4: Solve (αT +W )y(k+1) = s(k);
Step 5: Set z(k+1) = x(k+1) + iy(k+1);

From the above algorithm, we can see that the action of the SSR method re-
quires to solve two same symmetric positive definite linear subsystems with the
coefficient matrix αT +W in every iteration step. So we can use the Cholesky
factorization to solve them exactly or conjugate gradient (CG) method inex-
actly. Moreover, compared to the DSS and CRI methods, two linear subsys-
tems of the SSR method are same. This makes the proposed method needs less
computation, which will be verified by numerical experiments in Section 4.
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3. Convergence analysis of the SSR iteration method

In this section, we analyze the convergence theory of the SSR iterative
method in detail. First we give the following lemma which will be used for
the convergence property of the SSR iteration method.

Lemma 3.1. Let W ∈ Rn×n and T ∈ Rn×n be real symmetric positive definite.
Let µj > 0 and ξj (j = 1, . . . , n) be the eigenvalues of the matrices S =

W− 1
2TW− 1

2 and S = (αW− 1
2TW− 1

2 + In)
−1

, respectively. Then

ξj =
1

1 + αµj
.(3.1)

Proof. Since the matrix S = W− 1
2TW− 1

2 is real symmetric positive definite,
there exists an orthogonal matrix Q ∈ Rn×n such that

S = QΩQT ,

where Ω = diag
(
µ1, µ2, . . . , µn

)
, and µj > 0 (j = 1, . . . , n) are the

eigenvalues of S. Then

S = (In + αW− 1
2TW− 1

2 )
−1

= (In + αS)−1

= (In + αQΩQT )
−1

= Q(In + αΩ)
−1

QT .

It follows immediately that the eigenvalues of the matrix S satisfy the relation
(3.1). □

In order to analyze the convergence properties of the SSR method, the follow-
ing two theorems are given. First, Theorem 3.1 gives the relationship between
the eigenvalues of the two matrices GSSR(α) and W− 1

2TW− 1
2 .

Theorem 3.1. Let A = W + iT ∈ Cn×n, W ∈ Rn×n and T ∈ Rn×n be
real symmetric positive definite, and α > 0. Let λ and µj (j = 1, . . . , n) be

eigenvalues of the matrices GSSR(α) and W− 1
2TW− 1

2 , respectively. Then

λ2(1 + αµj)
2 − (2(1 + αµj)− α2)λ+ 1 = 0.(3.2)

Proof. From (2.4), the iteration matrix GSSR(α) of the SSR iteration method
is

GSSR(α) =

(
W− 1

2 0

0 W− 1
2

)(
S −αS

αS2 S − α2S2

)(
W

1
2 0

0 W
1
2

)
.
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Let λ be an eigenvalue of the matrix GSSR(α). Then

0 = det

((
λIn 0
0 λIn

)
−
(
W− 1

2 0

0 W− 1
2

)(
S −αS

αS2 S − α2S2

)(
W

1
2 0

0 W
1
2

))
= det

((
W− 1

2 0

0 W− 1
2

)(
λIn − S αS
−αS2 λIn − S + α2S2

)(
W

1
2 0

0 W
1
2

))
= det

((
λIn − S αS
−αS2 λIn − S + α2S2

))
.

So the eigenvalues of the matrix GSSR(α) could be computed from the following
determinant ∣∣∣∣∣λ− 1

1+αµj

α
1+αµj

−α
(1+αµj)

2 λ− 1
1+αµj

+ α2

(1+αµj)
2

∣∣∣∣∣ = 0.

After some calculations, it is not difficult to verify that the relationship (3.2)
is valid. This completes the proof of this theorem. □

Based on Theorem 3.1, we present the following theorem giving the specific
expressions of the eigenvalues of the iterative matrix GSSR(α).

Theorem 3.2. Let A = W + iT ∈ Cn×n, W ∈ Rn×n and T ∈ Rn×n be
real symmetric positive definite, and α > 0. Let µj > 0 (j = 1, . . . , n) be

eigenvalues of the matrix W− 1
2TW− 1

2 and µ1 ≤ µ2 ≤ · · · ≤ µn. Then the
eigenvalues λ±

j (j = 1, . . . , n) of the matrix GSSR(α) can be expressed as

(1) If 0 < α ≤ 2µ1 + 2
√

1 + µ2
1, then

λ±
j =

2(1 + αµj)− α2 ± iα
√
4(1 + αµj)− α2

2(1 + αµj)
2 .(3.3)

(2) If α ≥ 2µn + 2
√
1 + µ2

n, then

λ±
j =

2(1 + αµj)− α2 ± α
√

α2 − 4(1 + αµj)

2(1 + αµj)
2 .(3.4)

(3) If 2µ1 + 2
√
1 + µ2

1 < α < 2µn + 2
√
1 + µ2

n, then

λ±
j =

2(1 + αµj)− α2 ± α
√
α2 − 4(1 + αµj)

2(1 + αµj)
2 (j = 1, . . . , k),(3.5)

λ±
j =

2(1 + αµj)− α2 ± iα
√
4(1 + αµj)− α2

2(1 + αµj)
2 (j = k + 1, . . . , n),(3.6)

where k is chosen by 2µk + 2
√

1 + µ2
k < α < 2µk+1 + 2

√
1 + µ2

k+1.

Proof. It follows from Theorem 3.1 that

λ2(1 + αµj)
2 − (2(1 + αµj)− α2)λ+ 1 = 0.
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The above equation is regarded as a quadratic equation about λ, and the
discriminant of the root of the equation is

△j
λ = (2(1 + αµj)− α2)2 − 4(1 + αµj)

2
= α2(α2 − 4αµj − 4).

If 0 < α ≤ 2µ1 + 2
√

1 + µ2
1, then 0 < α ≤ 2µj + 2

√
1 + µ2

j (j = 1, 2, . . . , n).

Then for all j the discriminant △j
λ < 0, and one can obtain

λ±
j =

2(1 + αµj)− α2 ± iα
√
4(1 + αµj)− α2

2(1 + αµj)
2 .

If α ≥ 2µn + 2
√

1 + µ2
n, then α ≥ 2µj + 2

√
1 + µ2

j (j = 1, 2, . . . , n). Then for

all j the discriminant △j
λ ≥ 0, and we can get

λ±
j =

2(1 + αµj)− α2 ± α
√
α2 − 4(1 + αµj)

2(1 + αµj)
2 .

If 2µ1+2
√
1 + µ2

1 < α < µn+2
√
1 + µ2

n. Without loss of generality, we assume

that there exists a k such that 2µ1+2
√
1 + µ2

1 ≤ · · · ≤ 2µk +2
√

1 + µ2
k < α <

2µk+1 +2
√
1 + µ2

k+1 ≤ · · · ≤ µn +2
√
1 + µ2

n. Then △j
λ ≥ 0 (j = 1, . . . , k) and

△j
λ ≤ 0 (j = k + 1, . . . , n), and we obtain that

λ±
j =

2(1 + αµj)− α2 ± α
√
α2 − 4(1 + αµj)

2(1 + αµj)
2 (j = 1, . . . , k),

λ±
j =

2(1 + αµj)− α2 ± iα
√
4(1 + αµj)− α2

2(1 + αµj)
2 (j = k + 1, . . . , n).

By the above analyses, the proof of this theorem is completed. □

It is well-known that the SSR iteration method is convergent if and only
if ρ(GSSR(α)) < 1. However, it is difficult to obtain convergence interval
of parameter by making ρ(GSSR(α)) < 1 in general. Instead, we can consider
getting the upper bound of ρ(GSSR(α)), and let the upper bound be less than 1
to get the convergence interval of the parameter α involved in the SSR iteration
method. To this end, on basis of Theorem 3.2 the upper bound of ρ(GSSR(α))
of the SSR iterative method is given in the below theorem.

Theorem 3.3. Let A = W + iT ∈ Cn×n, W ∈ Rn×n and T ∈ Rn×n be real
symmetric positive definite, and α > 0. Let µj > 0 (j = 1, . . . , n) be eigenvalues

of the matrix W− 1
2TW− 1

2 and µ1 ≤ µ2 ≤ · · · ≤ µn. Then

ρ(GSSR(α)) = max
∣∣λ±

j

∣∣ ≤ σSSR(α),(3.7)

where

σSSR(α) =

{
1

1+αµ1
0 < α ≤ 2µ1 + 2

√
1 + µ2

1,
α2

(1+αµ1)2
α > 2µ1 + 2

√
1 + µ2

1.
(3.8)
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Proof. From Theorem 3.2, the eigenvalues λ±
j (j = 1, . . . , n) of the matrix

GSSR(α) can be expressed as

(1) If 0 < α ≤ 2µ1 + 2
√
1 + µ2

1, then for j = 1, . . . , n

λ±
j =

2(1 + αµj)− α2 ± iα
√
4(1 + αµj)− α2

2(1 + αµj)
2 ,

and one has∣∣λ±
j

∣∣2 =
(2(1 + αµj)− α2)

2
+ (α

√
4(1 + αµj)− α2)2

4(1 + αµj)
4

=
4(1 + αµj)

2 − 4α2(1 + αµj) + α4 + α2(4(1 + αµj)− α2)

4(1 + αµj)
4

=
4(1 + αµj)

2

4(1 + αµj)
4

=
1

(1 + αµj)
2 ,

which together with µ1 > 0 results in

ρ(GSSR(α)) = max
∣∣λ±

j

∣∣ = 1

1 + αµ1
.

(2) If α ≥ 2µn + 2
√
1 + µ2

n, then for j = 1, . . . , n

λ±
j =

2(1 + αµj)− α2 ± α
√
α2 − 4(1 + αµj)

2(1 + αµj)
2 .

It is not difficult to verify

2(1 + αµj)− α2 < 0 and α
√

α2 − 4(1 + αµj) < α2 − 2(1 + αµj),

then

(3.9)

∣∣λ+
j

∣∣ = α2 − 2(1 + αµj)− α
√
α2 − 4(1 + αµj)

2(1 + αµj)
2

<
α2 − 2(1 + αµj) + α

√
α2 − 4(1 + αµj)

2(1 + αµj)
2 =

∣∣λ−
j

∣∣ .
Besides, one can get

α2 − 2(1 + αµj) + α
√
α2 − 4(1 + αµj)

2(1 + αµj)
2 <

α2

(1 + αµj)
2 .(3.10)

It follows from Inequalities (3.9) and (3.10) that

ρ(GSSR(α)) = max
∣∣λ±

j

∣∣ < α2

(1 + αµ1)
2 .
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(3) If 2µ1+2
√
1 + µ2

1 < α < 2µn+2
√
1 + µ2

n, from Theorem 3.2 we can get

λ±
j =

2(1 + αµj)− α2 ± α
√
α2 − 4(1 + αµj)

2(1 + αµj)
2 (j = 1, . . . , k),

λ±
j =

2(1 + αµj)− α2 ± iα
√

4(1 + αµj)− α2

2(1 + αµj)
2 (j = k + 1, . . . ,m).

Similar to the discussions of the cases (1) and (2), we derive the following
inequalities ∣∣λ±

j

∣∣ < α2

(1 + αµ1)
2 , j = 1, . . . , k,

and ∣∣λ±
j

∣∣ < 1

1 + αµk+1
≤ 1

1 + αµ1
, j = k + 1, . . . , n.

Therefore, in this case one has

ρ(GSSR(α)) = max
∣∣λ±

j

∣∣ ≤ max{ 1

1 + αµ1
,

α2

(1 + αµ1)
2 }.

Next, we discuss the maximum of two functions 1
1+αµ1

and α2

(1+αµ1)2
. Let

N(α) =
1

1+αµ1
α2

(1+αµ1)2

= 1+αµ1

α2 . Then

dN(α)

dα
=

−2− αµ1

α3
< 0 (α > 0).

Thus, the function N(α) =
1

1+αµ1
α2

(1+αµ1)2

= 1+αµ1

α2 decreases monotonically on 2µ1+

2
√
1 + µ2

1 < α < 2µn + 2
√
1 + µ2

n. Then the function N(α) =
1

1+αµ1
α2

(1+αµ1)2

=

1+αµ1

α2 obtains the maximum value at α = 2µ1 + 2
√
1 + µ2

1, and the maximum
value is

N(2µ1 + 2
√

1 + µ2
1) =

1 + 2µ2
1 + 2µ1

√
1 + µ2

1

4 + 8µ2
1 + 8µ1

√
1 + µ2

1

< 1.

It follows that 1
1+αµ1

< α2

(1+αµ1)
2 , therefore

ρ(GSSR(α)) = max
∣∣λ±

j

∣∣ ≤ max{ 1

1 + αµ1
,

α2

(1 + αµ1)
2 } =

α2

(1 + αµ1)
2 .

Therefore, by summarizing the above conclusions, we get the upper bound of
ρ(GSSR(α)) in (3.7) and (3.8). The proof of this theorem is completed. □

Based on the upper bound of spectral radius of the iteration matrix GSSR(α)
in Theorem 3.3, the following theorem gives the convergence ranges of the
parameter α involved in the SSR method.
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Theorem 3.4. Let A = W + iT ∈ Cn×n, W ∈ Rn×n and T ∈ Rn×n be
real symmetric positive definite, and α > 0. Let µmin and µmax be smallest
and largest eigenvalue of the matrix W− 1

2TW− 1
2 , respectively. Then the SSR

iteration method is convergent if the parameter α satisfies one of the following
conditions

(a) 0 < α ≤ 2µmin + 2
√

1 + µ2
min;

(b) when µmin ≥ 1, α > 2µmin + 2
√
1 + µ2

min;

(c) when 3
4 < µmin < 1, 2µmin + 2

√
1 + µ2

min < α < 1
1−µmin

.

Proof. From Theorem 3.3, we know

ρ(GSSR(α)) ≤ σSSR(α) =

{
1

1+αµmin
0 < α ≤ 2µmin + 2

√
1 + µ2

min,
α2

(1+αµmin)2
α > 2µmin + 2

√
1 + µ2

min.

(1) If 0 < α ≤ 2µmin + 2
√
1 + µ2

min, then σSSR(α) = 1
1+αµmin

. Due to

µmin > 0, it follows immediately that ρ(GSSR(α)) ≤ σSSR(α) < 1.

(2) If α > 2µmin + 2
√
1 + µ2

min, in this case ρ(GSSR(α)) ≤ σSSR(α) =
α2

(1+αµmin)2
. Keeping in mind that α > 0 and µmin > 0, α2

(1+αµmin)2
< 1 amounts

to make

α(1− µmin) < 1.(3.11)

(i) When µmin ≥ 1, Inequality (3.11) is always valid. Therefore, in this case

the convergence interval of the parameter α is α > 2µmin + 2
√

1 + µ2
min.

(ii) When µmin < 1, it follows from (3.11) that α < 1
1−µmin

. For this case of

α > 2µmin + 2
√
1 + µ2

min and α < 1
1−µmin

, we should make 1
1−µmin

> 2µmin +

2
√
1 + µ2

min holding to guarantee that there exists α such that ρ(GSSR(α)) ≤
σSSR(α) < 1. If 1

1−µmin
> 2µmin + 2

√
1 + µ2

min, then

1

1− µmin
> 2µmin + 2

√
1 + µ2

min

⇐⇒ 1− 2µmin + 2µ2
min > 2(1− µmin)

√
1 + µ2

min

⇐⇒ (1− 2µmin + 2µ2
min)

2 > (2(1− µmin)
√
1 + µ2

min)
2

⇐⇒ 3

4
> µmin.

Thus when 3
4 < µmin < 1, the convergence interval of the parameter α is

2µmin + 2
√
1 + µ2

min < α < 1
1−µmin

. Summarizing all the above cases, the

convergence conditions for the SSR iteration method are given by (a)-(c) in
this theorem. □

Next, we give the following theorem where the theoretical quasi-optimal
parameter minimizing the upper bound of the spectral radius of the iteration
matrix of the SSR iteration method is presented.
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Theorem 3.5. Let A = W + iT ∈ Cn×n, W ∈ Rn×n and T ∈ Rn×n be
real symmetric positive definite, and α > 0. Let µmin and µmax be smallest
and largest eigenvalue of the matrix W− 1

2TW− 1
2 , respectively. Then the quasi-

optimal parameter is

α∗ = arg min{
α

σSSR(α)} = 2µmin + 2
√
1 + µ2

min .(3.12)

And the optimal upper bound of spectral radius of the iterative matrix is

σSSR(α∗) =
1

1 + 2µ2
min + 2µmin

√
1 + µ2

min

.(3.13)

Proof. From Theorem 3.3, the upper bound of ρ(GSSR(α)) is

σSSR(α) =

{
1

1+αµmin
0 < α ≤ 2µmin + 2

√
1 + µ2

min,
α2

(1+αµmin)2
α > 2µmin + 2

√
1 + µ2

min.

To find the quasi-optimal parameter α of the SSR iteration method, we mini-
mize the upper bound σSSR(α) of ρ(GSSR(α)).

Let h(α) = 1
1+αµmin

and s(α) = α2

(1+αµmin)
2 . By some calculations, we can

deduce that dh(α)
dα = − µmin

(1+αµmin)
2 ≤ 0 and ds(α)

dα = 2α
(1+αµmin)

3 > 0. We can see

that the function h(α) = 1
1+αµmin

is decreasing for α ∈ (0, µmin +2
√
1 + µ2

min],

and s(α) = α2

(1+αµmin)
2 is increasing for α ∈ (µmin + 2

√
1 + µ2

min,+∞). Thus

we can get

α∗ = arg min{
α

σSSR(α)} = 2µmin + 2
√
1 + µ2

min .

Then

σSSR(α∗)

= min{h(α∗), s(α∗)}

= min

{
1

1 + 2µ2
min + 2µmin

√
1 + µ2

min

,
(2µmin + 2

√
1 + µ2

min)
2

(1 + 2µ2
min + 2µmin

√
1 + µ2

min)
2

}
.

Due to the fact that
1

1+2µ2
min+2µmin

√
1+µ2

min

(2µmin+2
√

1+µ2
min)

2

(1+2µ2
min+2µmin

√
1+µ2

min)
2

=
1 + 2µ2

min + 2µmin

√
1 + µ2

min

(2µmin + 2
√

1 + µ2
min)

2

=
1 + 2µ2

min + 2µmin

√
1 + µ2

min

4 + 8µ2
min + 8µmin

√
1 + µ2

min

=
1

4
< 1,
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we have the result

1

1 + 2µ2
min + 2µmin

√
1 + 2µ2

min

<
(2µmin + 2

√
1 + µ2

min)
2

(1 + 2µ2
min + 2µmin

√
1 + 2µ2

min)
2
.

Therefore the optimal upper bound of spectral radius of the iterative matrix is

σSSR(α∗) =
1

1 + 2µ2
min + 2µmin

√
1 + µ2

min

.

The proof of this theorem is completed. □

4. Numerical experimental results

In this section, we use practical examples to show the effectiveness and
feasibility of the proposed SSR method by compared to the existing PMHSS,
CRI, DSS, and single step iteration methods in terms of iteration steps (IT),
iteration time (CPU) and relative residual (RES). This numerical experiment
result is run on in MATLAB 2018b on PC with Intel(R) Core(TM) i5 CPU
1.19Hz and 8GB. We adopt the zero vector z(0) = 0 as the initial guess for all
tested methods. When the relative residual satisfies∥∥r(k)∥∥

2∥∥r(0)∥∥
2

< 10−10 ,

the calculation ends, where r(k) = b − Az(k). In the following numerical ex-
periments, we use α∗ to represent the theoretical quasi-optimal parameter and
αeps to represent the experimental optimal parameter, and the maximum value
of α is set to 1000.

Example 4.1 ([16]). Consider the following linear system

(K − ω2M + i(CH + ωCV ))z = f,

where M = In, CH = γK and CV = 10IN . The matrix K = B⊗Im+Im⊗B ∈
Rm×m, (n = m2). In fact the matrix K is the five-point centered difference
approximating the operator −△ with homogeneous Dirichlet boundary condi-
tions, ω is the driving circular frequency, on a uniform mesh in the unit square
with h = 1

m+1 . Also we set ω = 7, γ ∈ {2, 5} and f = (1+ i)A1, with 1 being
the vector of all entries equal to 1.

Table 1. The experimentally found optimal parameters for
Example 4.1 with γ = 2.

Method m
64 128 256 512 1024

PMHSS [3] α [0.4,0.47] [0.4,0.47] [0.42,0.44] [0.41,0.45] [0.41,0.46]
Single step method [16] α [1.29,3.8] [1.38,3.27] [1.42,3.1] [1.43,3.06] [1.44,3.04]
SSR α [8.59,8.82] [6.75,8.93] [5.52,8.91] [7.33,8.36] [7.25,8.36]
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Table 2. The experimentally found optimal parameters for
Example 4.1 with γ = 5.

Method m
64 128 256 512 1024

PMHSS [3] α [0.51,0.63] [0.5,0.63] [0.55,0.58] [0.54,0.6] [0.53,0.61]
CRI [18] α [0.9,1.11] [0.85,1.18] [0.89,1.13] [0.83,1.2] [0.87,1.15]
DSS [19] α [0.9,1.11] [0.85,1.18] [0.89,1.13] [0.83,1.2] [0.87,1.15]
Single step method [16] α [1.35,1000] [1.38,1000] [1.39,1000] [1.39,1000] [1.39,1000]
SSR α [12.35,46.89] [8.65,44.55] [18.81,19.71] [13.66,20.57] [10.03,11.08]

Table 3. Numerical results of the tested methods for Exam-
ple 4.1 with γ = 2.

Method m
64 128 256 512 1024

PMHSS [3] αeps 0.45 0.41 0.43 0.42 0.41
IT 139 132 124 117 110
CPU 0.2557 1.3228 6.8255 32.2788 150.8733
RES 9.06E-11 9.12E-11 9.86E-11 9.72E-11 9.68E-11

Single step method [16] αeps 3.13 2.45 1.58 1.46 1.57
IT 30 30 30 30 30
CPU 0.0173 0.0925 0.4559 2.1102 9.4973
RES 7.62E-11 7.28E-11 8.29E-11 9.56E-11 8.55E-11

SSR αeps 8.71 6.89 7.64 7.72 8.19
IT 11 11 11 10 10
CPU 0.0112 0.0555 0.2531 1.156 5.184
RES 9.75E-11 9.09E-11 2.07E-11 6.74E-11 3.10E-11
α∗ 8.4901 8.4769 - - -
IT 12 11 - - -
CPU 0.017 0.063 - - -
RES 1.38E-11 3.90E-11 - - -

Tables 1 and 2 show the value ranges of the parameters with the least IT
of the PMHSS, SSR and Single step iterative methods processing Example 4.1
when γ = 2 and γ = 5, respectively. In addition, Table 2 also shows the
value ranges of the CRI and DSS iterative methods when IT is the least. And
when γ = 2, the CRI and DSS iterative methods do not converge when solving
Example 4.1, so we do not list the value ranges of the parameters and the
numerical results of the two methods in Table 1 and Table 3. Table 3 shows the
parameter values with the least CPU and the corresponding IT, CPU and RES.
It can be observed from Table 3 that the new method we established is superior
to the PMHSS and Single step iterative methods in all aspects. Based on Table
2, Table 4 shows the parameter values, IT, CPU and RES of the PMHSS, CRI,
DSS and SSR iterative methods when the IT is the least. It can be seen from
Table 2 that the value ranges of the Single step iterative method are very wide,
and it is difficult and costly to find the optimal parameters in the experiment.
Therefore, in Table 4, for the Single step iterative method, we show the optimal
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Table 4. Numerical results of the tested methods for Exam-
ple 4.1 with γ = 5.

Method m
64 128 256 512 1024

PMHSS [3] αeps 0.53 0.52 0.55 0.6 0.54
IT 99 93 87 82 77
CPU 0.1819 0.9656 4.7525 23.6799 114.7064
RES 8.91E-11 9.05E-11 9.97E-11 9.96E-11 9.53E-11

CRI [18] αeps 1.07 0.9 0.92 0.89 1.15
IT 30 29 27 26 24
CPU 0.0389 0.173 0.8266 3.7409 15.7525
RES 8.36E-11 6.72E-11 8.41E-11 6.63E-11 9.89E-11

DSS [19] αeps 1.07 1.07 0.89 0.97 1
IT 30 29 27 26 24
CPU 0.0404 0.2127 1.0312 4.8308 20.0113
RES 8.36E-11 5.86E-11 9.58E-11 5.22E-11 7.05E-11

Single step method [16] αeps 446 254 663 336 270
IT 16 16 16 16 16
CPU 0.0112 0.0602 0.2892 1.3333 6.0798
RES 2.79E-11 3.09E-11 3.22E-11 3.24E-11 3.24E-11

SSR αeps 30.3 26.43 19.43 19.47 11.01
IT 8 8 7 7 7
CPU 0.0084 0.0459 0.1946 0.9325 4.2535
RES 3.15E-11 1.70E-11 9.74E-11 4.26E-11 9.47E-11
α∗ 20.2350 20.2074 - - -
IT 8 8 - - -
CPU 0.0147 0.0726 - - -
RES 3.19E-11 1.15E-11 - - -

Table 5. The experimentally found optimal parameters for
Example 4.2.

Method n
602 702 802 902 1002

PMHSS [3] α [1.53,4.4] [1.53,4.4] [1.53,4.4] [1.53,4.4] [1.53,4.4]
CRI [18] α [0.81,1.23] [0.81,1.23] [0.81,1.23] [0.81,1.23] [0.81,1.23]
DSS [19] α [0.81,1.23] [0.81,1.23] [0.81,1.23] [0.81,1.23] [0.81,1.23]
Single step method [16] α [2.04,3.54] [2.04,3.54] [2.04,3.54] [2.04,3.54] [2.04,3.54]
SSR α [10.29,10.31] [10.29,10.31] [10.29,10.31] [10.29,10.31] [10.29,10.31]

value when α is taken as an integer, the corresponding IT, CPU and RES. It
can be observed from Table 4 that the IT, CPU of the SSR iterative method
are also better than those of other ones. On the other hand, Tables 3 and 4 also
show the results of the SSR method with α selected as the theoretical quasi-
optimal parameter. However, the quasi-optimal parameter given in this paper
is related to the smallest eigenvalue µmin of the matrix W− 1

2TW− 1
2 . When

the order of the matrix is large, the amount of eigenvalue calculation exceeds
the memory of computer, so there is no result. For this reason, we do not list



1196 J. J. CUI, Z. G. HUANG, B. B. LI, AND X. F. XIE

Table 6. Numerical results of the tested methods for Exam-
ple 4.2.

Method n
602 702 802 902 1002

PMHSS [3] αeps 1.78 1.59 1.56 1.84 1.53
IT 48 48 48 48 48
CPU 3.164 5.9379 10.5617 17.2928 27.7211
RES 8.80E-11 9.57S-11 9.76E-11 8.67E-11 9.97E-11

CRI [18] αeps 0.96 0.89 0.83 0.83 0.82
IT 26 26 26 26 26
CPU 2.0775 3.7188 6.7332 11.1903 18.7065
RES 7.20E-11 7.87E-11 9.20E-11 9.20E-11 9.52E-11

DSS [19] αeps 0.95 0.87 0.81 0.82 0.81
IT 26 26 26 26 26
CPU 3.6652 6.84 11.9586 19.3768 30.3267
RES 7.25E-11 8.21E-11 9.87E-11 9.52E-11 9.87E-11

Single step method [16] αeps 2.97 2.74 2.89 3.44 2.06
IT 23 23 23 23 23
CPU 1.0219 1.9205 3.4505 5.6164 8.9782
RES 9.31E-11 9.16E-11 9.25E-11 9.85E-11 9.92E-11

SSR αeps 10.31 10.31 10.3 10.3 10.3
IT 8 8 8 8 8
CPU 0.5493 1.0852 1.9676 3.3663 5.4611
RES 9.69E-11 9.69E-11 8.94E-11 8.94E-11 8.94E-11
α∗ 10.8187 10.8187 10.8187 10.8187 10.8187
IT 10 10 10 10 10
CPU 0.6882 1.2042 2.2634 3.8145 6.3598
RES 3.86E-12 3.86E-12 3.86E-12 3.86E-12 3.86E-12

the results of the SSR iteration method with quasi-optimal parameters when
m ≥ 256 in Tables 3 and 4.

Example 4.2 ([16]). Consider the complex linear system Az = f , where A
has a quasi-tridiagonal form

1 + 4i 1
8 0 · · · 0 1

2

1
8 1 + 4i 1

8 0
... 0

0 1
8

. . .
. . . 0

...
... 0

. . .
. . . 1

8 0

0
... 0 1

8 1 + 4i 1
8

1
2 0 · · · 0 1

8 1 + 4i


n×n

,

and f can be determined when exact solution is z =
(
1, 1

2, . . . 1
n−1

1
n

)T
.

Table 5 shows the ranges of the optimal parameters involved in the tested
methods used to solve Example 4.2. The parameters in Table 6 are selected the
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Figure 1. Iterations (IT) versus α for the PMHSS, CRI, DSS,
SSR and Single step method. (left Example 4.1 for m = 64
γ = 2, middle Example 4.1 for m = 64 γ = 5 and right
Example 4.2 for n = 602).

ones with the least IT from Table 5. Similar to Tables 3 and 4, and Table 6 also
shows the IT, CPU and RES of each tested method. In addition, numerical
results of the SSR method with the theoretical quasi-optimal parameter α∗ are
listed in Table 6. From the results shown in Table 6, we can see that the SSR
iterative method returns better numerical results than the other tested ones in
terms of IT and CPU times.

Figure 1 shows the number of iteration steps for the PMHSS, CRI, DSS,
SSR and Single step iteration methods versus parameter α.

From Figure 1, it can be seen that the IT of the SSR method are always less
than that of the other tested ones for the two examples. In addition, it can
be seen that the IT of the SSR method are relatively stable with the increases
of the parameter α, which means that the proposed method is not sensitive to
the selection of the parameter α.
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5. Concluding remarks

In the paper, for solving the system of linear equations (1.1), we present
a new single step real-valued (SSR) iterative method, which avoids involving
complex arithmetic compared to the single step iteration method one derived
in [16]. And compared to the DSS [20] and CRI [18] methods, two linear sub-
systems of the SSR method are the same. Besides, we establish the convergence
theories for the proposed iteration method and give the quasi-optimal param-
eter minimizing the upper bound of the spectral radius of the iteration matrix
of the SSR iteration method. Finally, numerical experiments demonstrate that
our new method can return better computing efficiency than the PMHSS, CRI,
DSS and single step iteration methods.
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