• 제목/요약/키워드: semi-Euclidean space

검색결과 8건 처리시간 0.023초

SOME CHARACTERIZATIONS OF QUATERNIONIC RECTIFYING CURVES IN THE SEMI-EUCLIDEAN SPACE 𝔼24

  • Erisir, Tulay;Gungor, Mehmet Ali
    • 호남수학학술지
    • /
    • 제36권1호
    • /
    • pp.67-83
    • /
    • 2014
  • The notion of rectifying curve in the Euclidean space is introduced by Chen as a curve whose position vector always lies in its rectifying plane spanned by the tangent and the binormal vector field t and $n_2$ of the curve, [1]. In this study, we have obtained some characterizations of semi-real spatial quaternionic rectifying curves in $\mathbb{R}^3_1$. Moreover, by the aid of these characterizations, we have investigated semi real quaternionic rectifying curves in semi-quaternionic space $\mathbb{Q}_v$.

TIMELIKE HELICES IN THE SEMI-EUCLIDEAN SPACE E42

  • Aydin, Tuba Agirman;Ayazoglu, Rabil;Kocayigit, Huseyin
    • 호남수학학술지
    • /
    • 제44권3호
    • /
    • pp.310-324
    • /
    • 2022
  • In this paper, we define timelike curves in R42 and characterize such curves in terms of Frenet frame. Also, we examine the timelike helices of R42, taking into account their curvatures. In addition, we study timelike slant helices, timelike B1-slant helices, timelike B2-slant helices in four dimensional semi-Euclidean space, R42. And then we obtain an approximate solution for the timelike B1 slant helix with Taylor matrix collocation method.

DEGREE OF THE GAUSS MAP ON AN ODD DIMENSIONAL MANIFOLD

  • Byun, Yang-Hyun
    • East Asian mathematical journal
    • /
    • 제14권2호
    • /
    • pp.269-279
    • /
    • 1998
  • For a codimension 1 submanifold in a Euclidean 2n-space, the degree of the gauss map mod 2 is the semi-characteristic of the manifold in $Z_2$ coefficient.

  • PDF

SPLIT QUATERNIONS AND ROTATIONS IN SEMI EUCLIDEAN SPACE E42

  • Kula, Levent;Yayli, Yusuf
    • 대한수학회지
    • /
    • 제44권6호
    • /
    • pp.1313-1327
    • /
    • 2007
  • We review the algebraic structure of $\mathbb{H}{\sharp}$ and show that $\mathbb{H}{\sharp}$ has a scalar product that allows as to identify it with semi Euclidean ${\mathbb{E}}^4_2$. We show that a pair q and p of unit split quaternions in $\mathbb{H}{\sharp}$ determines a rotation $R_{qp}:\mathbb{H}{\sharp}{\rightarrow}\mathbb{H}{\sharp}$. Moreover, we prove that $R_{qp}$ is a product of rotations in a pair of orthogonal planes in ${\mathbb{E}}^4_2$. To do that we call upon one tool from the theory of second ordinary differential equations.

FUNDAMENTAL THEOREM FOR LIGHTLIKE CURVES

  • Jin, Dae-Ho
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제10권1호
    • /
    • pp.13-23
    • /
    • 2003
  • The purpose of this paper is to prove the fundamental existence and uniqueness theorems for lightlike curves in a 6-dimensional semi-Euclidean space Rq of index q, since the general n-dimensional cases are too complicated.

  • PDF

POLARIZED REAL TORI

  • Yang, Jae-Hyun
    • 대한수학회지
    • /
    • 제52권2호
    • /
    • pp.269-331
    • /
    • 2015
  • For a fixed positive integer g, we let $\mathcal{P}_g=\{Y{\in}\mathbb{R}^{(g,g)}{\mid}Y=^tY>0\}$ be the open convex cone in the Euclidean space $\mathbb{R}^{g(g+1)/2}$. Then the general linear group GL(g, $\mathbb{R}$) acts naturally on $\mathcal{P}_g$ by $A{\star}Y=AY^tA(A{\in}GL(g,\mathbb{R}),\;Y{\in}\mathcal{P}_g)$. We introduce a notion of polarized real tori. We show that the open cone $\mathcal{P}_g$ parametrizes principally polarized real tori of dimension g and that the Minkowski modular space 𝔗g = $GL(g,\mathbb{Z}){\backslash}\mathcal{P}_g$ may be regarded as a moduli space of principally polarized real tori of dimension g. We also study smooth line bundles on a polarized real torus by relating them to holomorphic line bundles on its associated polarized real abelian variety.

SOME RESULTS ON THE GEOMETRY OF A NON-CONFORMAL DEFORMATION OF A METRIC

  • Djaa, Nour Elhouda;Zagane, Abderrahim
    • 대한수학회논문집
    • /
    • 제37권3호
    • /
    • pp.865-879
    • /
    • 2022
  • Let (Mm, g) be an m-dimensional Riemannian manifold. In this paper, we introduce a new class of metric on (Mm, g), obtained by a non-conformal deformation of the metric g. First we investigate the Levi-Civita connection of this metric. Secondly we characterize the Riemannian curvature, the sectional curvature and the scalar curvature. In the last section we characterizes some class of proper biharmonic maps. Examples of proper biharmonic maps are constructed when (Mm, g) is an Euclidean space.