Browse > Article
http://dx.doi.org/10.5831/HMJ.2022.44.3.310

TIMELIKE HELICES IN THE SEMI-EUCLIDEAN SPACE E42  

Aydin, Tuba Agirman (Department of Mathematics, Bayburt University)
Ayazoglu, Rabil (Department of Mathematics, Bayburt University)
Kocayigit, Huseyin (Department of Mathematics, Celal Bayar University)
Publication Information
Honam Mathematical Journal / v.44, no.3, 2022 , pp. 310-324 More about this Journal
Abstract
In this paper, we define timelike curves in R42 and characterize such curves in terms of Frenet frame. Also, we examine the timelike helices of R42, taking into account their curvatures. In addition, we study timelike slant helices, timelike B1-slant helices, timelike B2-slant helices in four dimensional semi-Euclidean space, R42. And then we obtain an approximate solution for the timelike B1 slant helix with Taylor matrix collocation method.
Keywords
Semi-Euclidean space; timelike curves; timelike slant helix; timelike helix; Taylor matrix collocation method;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 M. Hosaka, Theory of Curves. Modeling of Curves and Surfaces in CAD/CAM. Computer Graphics-Systems and Applications, Springer, Berlin, Heidelberg, 1992.
2 J. Monterde, Curves With Constant Curvature Ratios, Bol. Soc. Mat. Mex. 13 (2007), 177-186.
3 T. A. Aydin and M. Sezer, Taylor-Matrix Collocation Method to Solution of Differential Equations Characterizing Spherical Curves in Euclidean 4-Space, Celal Bayar Uni. J. Sci. 15 (2019), 1-7.
4 I. Gok, C. Camci, and H. H. Hacisalihoglu, Vn-slant helices in Euclidean n-space En, Math. Commun. 14 (2009), 317-329.
5 L. Kula and Y. Yayli, On slant helix and its spherical indicatrix, Appl. Math. Comput. 169 (2005), 600-607.
6 S. Izumiya and N. Takeuchi, New special curves and developable surfaces, Turk. J. Math. 28 (2004), 153-163.
7 F. Kahraman, I. Gok, and H. H. Hacisalihoglu, On the quaternionic B2 slant helices in the semi-Euclidean space E42, App. Math. Comp. 218 (2012), 6391-6400.   DOI
8 F. Klein and S. Lie, Uber diejenigen ebenenen kurven welche durch ein geschlossenes system von einfach unendlich vielen vartauschbaren linearen transformationen in sich ubergehen, Math. Ann. 4 (1871), 50-84.   DOI
9 M. Onder, M. Kazaz, H. Kocayigit, and O. Kilic, B2-slant helix in Euclidean 4-space E4, Int. J. Cont. Math. Sci. 3 (2008), 1433-1440.
10 G. Ozturk, K. Arslan, and H. H. Hacisalihoglu, A characterization of ccr-curves in Rm, Proc. Estonian Acad. Sci. 57 (2008), 217-224.   DOI
11 T. A. Ahmad and R. Lopez, Slant helices in Euclidean 4-space E4, preprint (2009); arXiv:0901.3324.
12 V. Rovenski, Geometry of curves and surfaces with maple, Birkhauser, London, 2000.
13 A. C. Coken and A. Gorgulu, On Joachimsthal's theorems in semi-Euclidean spaces, Nonlinear Analysis: Theory, Meth. App. 70 (2009), 3932-3942.   DOI
14 B. Altunkaya, Helices in the n-dimensional Minkowski spacetime, Results in Phy. 14 (2019), 102445.   DOI
15 R. Ayazoglu, S. S. Sener, and T. A. Aydin, Existence of solutions for a resonant problem under Landesman-Lazer type conditions involving more general elliptic operators in divergence form, Trans. Nat. Aca. Sci. Azer. Ser. Phys.-tech. Math. Sci. 40 (2020), 1-14.
16 T. A. Aydin, M. Sezer, and H. Kocayigit, An Approximate Solution of Equations Characterizing Spacelike Curves of Constant Breadth in Minkowski 3-Space, New Trend in Math. Sci. 6 (2018), 182-195.
17 R. A. Mashiyev, Three Solutions to a Neumann Problem for Elliptic Equations with Variable Exponent, Arab. J. Sci. Eng. 36 (2011), 1559-1567.   DOI
18 B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press Inc., London, 1983.
19 E. Soley and M. Tosun, Timelike Bertrand Curves in Semi-Euclidean Space, Int. J. Math. Stat. 14 (2013), 78-89.