DOI QR코드

DOI QR Code

SPLIT QUATERNIONS AND ROTATIONS IN SEMI EUCLIDEAN SPACE E42

  • Kula, Levent (DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE ANKARA UNIVERSITY) ;
  • Yayli, Yusuf (DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE ANKARA UNIVERSITY)
  • Published : 2007.11.30

Abstract

We review the algebraic structure of $\mathbb{H}{\sharp}$ and show that $\mathbb{H}{\sharp}$ has a scalar product that allows as to identify it with semi Euclidean ${\mathbb{E}}^4_2$. We show that a pair q and p of unit split quaternions in $\mathbb{H}{\sharp}$ determines a rotation $R_{qp}:\mathbb{H}{\sharp}{\rightarrow}\mathbb{H}{\sharp}$. Moreover, we prove that $R_{qp}$ is a product of rotations in a pair of orthogonal planes in ${\mathbb{E}}^4_2$. To do that we call upon one tool from the theory of second ordinary differential equations.

Keywords

References

  1. O. P. Agrawal, Hamilton operators and dual-number-quaternions in spatial kinematics, Mech. Mach. Theory. 22 (1987), no. 6, 569-575 https://doi.org/10.1016/0094-114X(87)90052-8
  2. J. Inoguchi, Timelike Surfaces of Constant Mean Curvature in Minkowski 3-Space, Tokyo J. Math. 21 (1998), no. 1, 140-152
  3. L. Kula and Y. Yayli, Dual Split Quaternions and Screw Motions in Minkowski 3-space, Iranian Journal of Science and Technology (Trans A), preprint
  4. B. O'Neill, Semi-Riemannian Geometry, Pure and Applied Mathematics, 103. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983
  5. P. J. Ryan, Euclidean and non-Euclidean Geometry, Cambridge University Press, Cam- bridge, 1986
  6. Y. Tain, Universal Factorization Equalities for Quaternion Matrices and their Applica- tions, Math. J. Okoyama Univ. 41 (1999), 45-62
  7. J. L. Weiner and G. R. Wilkens, Quaternions and Rotations in E4, Amer. Math. Monthly 112 (2005), no. 1, 69-76 https://doi.org/10.2307/30037387

Cited by

  1. On the Consimilarity of Split Quaternions and Split Quaternion Matrices vol.24, pp.3, 2016, https://doi.org/10.1515/auom-2016-0054
  2. On the Semisimilarity and Consemisimilarity of Split Quaternions vol.26, pp.2, 2016, https://doi.org/10.1007/s00006-015-0633-y
  3. Some Fixed Points Results of Quadratic Functions in Split Quaternions vol.2016, 2016, https://doi.org/10.1155/2016/3460257
  4. Algebraic techniques for diagonalization of a split quaternion matrix in split quaternionic mechanics vol.56, pp.8, 2015, https://doi.org/10.1063/1.4928935
  5. The Regularity of Functions on Dual Split Quaternions in Clifford Analysis vol.2014, 2014, https://doi.org/10.1155/2014/369430
  6. SPLIT HYPERHOLOMORPHIC FUNCTION IN CLIFFORD ANALYSIS vol.22, pp.1, 2015, https://doi.org/10.7468/jksmeb.2015.22.1.57
  7. Cramer’s Rules for Some Hermitian Coquaternionic Matrix Equations vol.27, pp.3, 2017, https://doi.org/10.1007/s00006-016-0751-1
  8. SUPERSYMMETRIC QUANTUM MECHANICS AND EUCLIDEAN–DIRAC OPERATOR WITH COMPLEXIFIED QUATERNIONS vol.28, pp.08, 2013, https://doi.org/10.1142/S0217732313500260
  9. Polar Coordinate Expression of Hyperholomorphic Functions on Split Quaternions in Clifford Analysis vol.25, pp.4, 2015, https://doi.org/10.1007/s00006-015-0541-1
  10. On Complex Split Quaternion Matrices vol.23, pp.3, 2013, https://doi.org/10.1007/s00006-013-0399-z
  11. Two-sided linear split quaternionic equations withnunknowns vol.63, pp.1, 2015, https://doi.org/10.1080/03081087.2013.851196
  12. Fibonacci Generalized Quaternions vol.24, pp.3, 2014, https://doi.org/10.1007/s00006-014-0458-0
  13. MECHANICAL SYSTEMS ON GENERALIZED-QUATERNIONIC KÄHLER MANIFOLDS vol.08, pp.07, 2011, https://doi.org/10.1142/S0219887811005804
  14. A New Representation of Canal Surfaces with Split Quaternions in Minkowski 3-Space vol.27, pp.2, 2017, https://doi.org/10.1007/s00006-016-0723-5
  15. On exponential of split quaternionic matrices vol.315, 2017, https://doi.org/10.1016/j.amc.2017.08.007
  16. A New Polar Representation for Split and Dual Split Quaternions vol.27, pp.3, 2017, https://doi.org/10.1007/s00006-017-0797-8
  17. A New Aspect of Dual Fibonacci Quaternions vol.26, pp.2, 2016, https://doi.org/10.1007/s00006-015-0619-9
  18. Algebraic methods for least squares problem in split quaternionic mechanics vol.269, 2015, https://doi.org/10.1016/j.amc.2015.07.072
  19. On Hermitian Solutions of the Split Quaternion Matrix Equation $$AXB+CXD=E$$ A X B + C X D = E 2017, https://doi.org/10.1007/s00006-017-0806-y
  20. On Eigenvalues of Split Quaternion Matrices vol.23, pp.3, 2013, https://doi.org/10.1007/s00006-013-0391-7
  21. Lie Algebra of Unit Tangent Bundle vol.27, pp.2, 2017, https://doi.org/10.1007/s00006-016-0670-1
  22. The Column and Row Immanants Over A Split Quaternion Algebra vol.25, pp.3, 2015, https://doi.org/10.1007/s00006-014-0517-6
  23. The Hyperbolic Spinor Representation of Transformations in $$\mathbb {R}_1^3$$R13 by Means of Split Quaternions vol.28, pp.1, 2018, https://doi.org/10.1007/s00006-018-0844-0
  24. On the Roots of Coquaternions vol.28, pp.5, 2018, https://doi.org/10.1007/s00006-018-0914-3
  25. A Different Polar Representation for Generalized and Generalized Dual Quaternions vol.28, pp.4, 2018, https://doi.org/10.1007/s00006-018-0895-2
  26. Fixed Points Results in Algebras of Split Quaternion and Octonion vol.10, pp.9, 2018, https://doi.org/10.3390/sym10090405
  27. A note on quaternion matrices and split quaternion matrix pencils vol.58, pp.1-2, 2018, https://doi.org/10.1007/s12190-017-1147-7
  28. Involutions in split semi-quaternions vol.41, pp.12, 2018, https://doi.org/10.1002/mma.4910
  29. Circular Surfaces with Split Quaternionic Representations in Minkowski 3-space vol.28, pp.3, 2018, https://doi.org/10.1007/s00006-018-0883-6
  30. The construction of circular surfaces with quaternions pp.1793-7183, 2019, https://doi.org/10.1142/S1793557119500918
  31. The number of zeros of unilateral polynomials over coquaternions revisited pp.1563-5139, 2019, https://doi.org/10.1080/03081087.2018.1450828