Journal of Information Technology Applications and Management
/
v.30
no.5
/
pp.1-19
/
2023
This study examines Korean users' attitudes and emotions toward Melon and Spotify, which lead the music streaming market. We used Text Mining, Semantic Network Analysis, TF-IDF, Centrality, CONCOR, and Word2Vec analysis. As a result of the study, MelOn was used in a user's daily life. Based on Melon's advantages of providing various contents, the advantage is judged to have considerable competitiveness beyond the limits of the streaming app. However, the MelOn users had negative emotions such as anger, repulsion, and pressure. On the contrary, in the case of Spotify, users were highly interested in the music content. In particular, interest in foreign music was high, and users were also interested in stock investment. In addition, positive emotions such as interest and pleasure were higher than MelOn users, which could be interpreted as providing attractive services to Korean users. While previous studies have mainly focused on technical or personal factors, this study focuses on consumer reactions (online reviews) according to corporate strategies, and this point is the differentiation from others.
Journal of The Korean Association For Science Education
/
v.26
no.3
/
pp.393-405
/
2006
The purpose of this study was to analyze the effects of Semantic Network Program (SNP) instruction on learning achievement and motivation in high school biology classes. For this study, a SNP was designed by applying the recommendations in regard to student attention and satisfaction factors in Keller's ARCS theory. SNP instruction was conducted with an experimental group and a control group, each consisting of 62 high school biology class student. A pretest-posttest control group design was employed. The pre-test was used to analyze the learning achievement test, learning motivation test, and semantic forming test. For 4 weeks the experiment group was instructed using the developed SNP which centered on Keller's attention and satisfaction factors, and the control group was instructed via teacher-centered lectures based on the textbook. It was found that SNP instruction efficiently increased students' biology learning achievement (p<.001). It was also discovered that SNP instruction was effective in increasing Keller's motivation strategies on attention and satisfaction factors (p<.001). In addition, SNP instruction positively affected students' semantic formation (p<.001) and learning content retention (p>.05) in the heredity unit by aiding students in the area of active multimedia learning. An in depth interview with students in the class using SNP instruction showed that material learned via this method in biology had longer retention of problem-solving methods. Consequently, SNP instruction according to motivation strategies may high school biology teachers with meaningful teaching-learning methods strategies for the unit on heredity.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.11
no.5
/
pp.550-555
/
2018
This study aims to identify and compare contents and keywords used in articles related to blockchain applications to various industries. The text mining and Semantic Network Analysis, as methods of keyword network analysis, were used to analyze articles including terms of 'finance' 'energy' and 'logistics', which media and government frequently mentioned as areas that can apply blockchain technologies. For this study, data were collected from 43,093 articles from January, 2017 through July, 2018. Data crawling was carried out by using Python BeautifulSoup and data cleaning was performed in order to eliminate mutual redundancies of the three terms. After that, text mining and semantic network analysis were performed using Textom and UCInet for network analysis between keywords. The results showed that all the three terms were similar in terms of 'technology', but there were differences in the contents of 'government policy' or 'industry' issues. In addition, there were differences in frequencies and centralities of these terms.
Purpose - The purpose of this study was to investigate the perception of 'unmanned cafes' on the network through big data analysis, and to identify the latest trends in rapidly changing consumer perception. Based on this, I would like to suggest that it can be used as basic data for the revitalization of unmanned cafes and differentiated marketing strategies. Design/methodology/approach - This study collected documents containing unmanned cafe keywords for about three years, and the data collected using text mining techniques were analyzed using methods such as keyword frequency analysis, centrality analysis, and keyword network analysis. Findings - First, the top 10 words with a high frequency of appearance were identified in the order of unmanned cafes, unmanned cafes, start-up, operation, coffee, time, coffee machine, franchise, and robot cafes. Second, visualization of the semantic network confirmed that the key keyword "unmanned cafe" was at the center of the keyword cluster. Research implications or Originality - Using big data to collect and analyze keywords with high web visibility, we tried to identify new issues or trends in unmanned cafe recognition, which consists of keywords related to start-ups, mainly deals with topics related to start-ups when unmanned cafes are mentioned on the network.
This study investigated university students' perspectives on good class and instructional practices through social network analysis. The subjects were 321 students in the third and fourth academic years in a Korean university. The subjects completed four open-ended questions, asking about experience of good class, good instructors' teaching practice, and their feelings and attitudes when participating in good class. As social network analysis, KrKwic (Korea Key Words in Context) was used to compute word frequencies and analyze semantic network structures and Ucinet Netdraw to assess centrality in the social network, consisting of degree centrality, closeness centrality, and between centrality. The results are as follows. First, students showed 5 keywords to depict what good class is, including 'understanding', 'example', 'video', 'interest', and 'communication'. Second, the characteristics of teaching methods by professors who practice good class indicate 'assignments', 'questions', 'understanding', 'example', and 'feedback'. Third, the top 5 keywords of students' attitudes as participating in good class are 'active', 'participation', 'focus', 'listening', and 'asking'. Last, keywords depicting desirable class that students most wanted to take next time are 'assignments', 'rewards', 'understanding', 'difficulty', and 'interest'. The findings from this study include the meanings of the semantic network structures of words in the text making up messages. Also this study can provide empirical evidence for educators and educational practitioners in higher education to create effective learning environments.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.16
no.3
/
pp.877-893
/
2022
With the development of deep learning, face inpainting has been significantly enhanced in the past few years. Although image inpainting framework integrated with generative adversarial network or attention mechanism enhanced the semantic understanding among facial components, the issues of reconstruction on corrupted regions are still worthy to explore, such as blurred edge structure, excessive smoothness, unreasonable semantic understanding and visual artifacts, etc. To address these issues, we propose a Learnable Structure Knowledge of Fusion Network (LSK-FNet), which learns a prior knowledge by edge generation network for image inpainting. The architecture involves two steps: Firstly, structure information obtained by edge generation network is used as the prior knowledge for face inpainting network. Secondly, both the generated prior knowledge and the incomplete image are fed into the face inpainting network together to get the fusion information. To improve the accuracy of inpainting, both of gated convolution and region normalization are applied in our proposed model. We evaluate our LSK-FNet qualitatively and quantitatively on the CelebA-HQ dataset. The experimental results demonstrate that the edge structure and details of facial images can be improved by using LSK-FNet. Our model surpasses the compared models on L1, PSNR and SSIM metrics. When the masked region is less than 20%, L1 loss reduce by more than 4.3%.
The Transactions of the Korea Information Processing Society
/
v.3
no.7
/
pp.1792-1802
/
1996
The analysis of prepositional phrases in English-to Korean machine translation has problem on the PP-attachment resolution, semantic analysis, and acquisition of information. This paper presents an analysis system for prepositional phrases, which solves the problem. The analysis system consists of the PP-attachment resolution hybrid system, semantic analysis system, and semantic feature generator that automatically generates input information. It provides objectiveness in analyzing prepositional phrases with the automatic generation of semantic features. The semantic analysis system enables to generate natural Korean expressions through selection semantic roles of prepositional phrases. The PP-attachment resolution hybrid system has the merit of the rule-based and neural network-based method.
Journal of the Korean Society for Library and Information Science
/
v.39
no.4
/
pp.119-138
/
2005
The purpose of this study is to analyze and systematize the semantic relationships in knowledge organization systems(KOS) . For this purpose, Classification systems, thesaurus, subject headings, semantic networks, ontology, databases were analyzed in terms of the semantic relationships between terms. Also, various kinds of the terminological relationships not only in the current KOS but in the theoretical researches were collected and analyzed. In addition, six proposals were suggested for the organized system of the terminological relationships for the future uses.
Journal of Korea Society of Industrial Information Systems
/
v.12
no.4
/
pp.25-31
/
2007
An automatic term-network construction system is proposed in this paper. This system uses the statistical values of the terms appeared in a document corpus. The 186 oral history documents collected from the Saemangeum area of Chollapuk-do, Korea, are used for the research. The term relationships presented in the term-network are decided by the cosine similarities of the term vectors. The number of the terms extracted from the documents is about 1700. The system is able to show the term relationships from the term-network as quickly as like a real-time system. The way of this term-network construction is expected as one of the methods to construct the ontology system and to support the semantic retrieval system in the near future.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.16
no.1
/
pp.245-265
/
2022
In response to problems such as insufficient extraction information, low detection accuracy, and frequent misdetection in the field of Thangka image defects, this paper proposes a YOLOv5 prediction algorithm fused with the attention mechanism. Firstly, the Backbone network is used for feature extraction, and the attention mechanism is fused to represent different features, so that the network can fully extract the texture and semantic features of the defect area. The extracted features are then weighted and fused, so as to reduce the loss of information. Next, the weighted fused features are transferred to the Neck network, the semantic features and texture features of different layers are fused by FPN, and the defect target is located more accurately by PAN. In the detection network, the CIOU loss function is used to replace the GIOU loss function to locate the image defect area quickly and accurately, generate the bounding box, and predict the defect category. The results show that compared with the original network, YOLOv5-SE and YOLOv5-CBAM achieve an improvement of 8.95% and 12.87% in detection accuracy respectively. The improved networks can identify the location and category of defects more accurately, and greatly improve the accuracy of defect detection of Thangka images.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.