• 제목/요약/키워드: semantic network

검색결과 751건 처리시간 0.022초

The Study of Comparing Korean Consumers' Attitudes Toward Spotify and MelOn: Using Semantic Network Analysis

  • Namjae Cho;Bao Chen Liu;Giseob Yu
    • Journal of Information Technology Applications and Management
    • /
    • 제30권5호
    • /
    • pp.1-19
    • /
    • 2023
  • This study examines Korean users' attitudes and emotions toward Melon and Spotify, which lead the music streaming market. We used Text Mining, Semantic Network Analysis, TF-IDF, Centrality, CONCOR, and Word2Vec analysis. As a result of the study, MelOn was used in a user's daily life. Based on Melon's advantages of providing various contents, the advantage is judged to have considerable competitiveness beyond the limits of the streaming app. However, the MelOn users had negative emotions such as anger, repulsion, and pressure. On the contrary, in the case of Spotify, users were highly interested in the music content. In particular, interest in foreign music was high, and users were also interested in stock investment. In addition, positive emotions such as interest and pleasure were higher than MelOn users, which could be interpreted as providing attractive services to Korean users. While previous studies have mainly focused on technical or personal factors, this study focuses on consumer reactions (online reviews) according to corporate strategies, and this point is the differentiation from others.

동기전략을 적용한 의미망 프로그램 활용 수업이 고등학교 생물 학업성취도와 학습동기에 미치는 효과: 생물I '유전' 단원을 중심으로 (The Effects of a Semantic Network Program Instruction for the Learning Achievement and Learning Motivation in High School Biology Class: Centering the Unit of Heredity)

  • 김동렬;문두호;손연아
    • 한국과학교육학회지
    • /
    • 제26권3호
    • /
    • pp.393-405
    • /
    • 2006
  • 본 연구에서는 고등학교 생물 I, '유전' 단원에서 Keller의 ARCS 전략 중, 특히 "주의집중"과 "만족감" 요소를 적용한, 의미 망 프로그램(Semantic Network Program)을 활용한 수업이 학생들의 학업성취도와 학습동기 향상에 미치는 효과를 분석하는 것을 연구의 목적으로 삼았다. 연구대상은 고등학교 2학년 실험집단 및 통제집단의 124명으로 구성되었고, 사전검사로 학업성취도 검사, 학습동기검사, 그리고 의미망 형성 검사를 실시한 후, 4주간에 걸쳐 6차시 동안 실험집단에게는 ARCS 전략 중 주의집중 전략을 적용한 의미망 프로그램을 활용한 유전 수업과 만족감 전략에 따른 의미망 제작 활동을, 통제집단에게는 교과서 중심의 강의식 수업을 처치하였다. 수업 처치에 따른 사후 검사 결과 동기전략을 적용한 의미망 프로그램을 활용한 수업은 강의식 수업보다 '주의집중과 만족감'을 높여 학생들의 인지구조에 새로운 지식을 효과적으로 연결시켜 생물 학업성취도를 향상시켰고(p<.001), 학생들의 유전관련 새로운 개념 형성에도 효과적인 것으로 나타났다(p<.001). 또한 본 연구에서 적용한 수업은 학생들이 생물 개념들을 구조지식으로 조직하여 이해함으로써, 기억효과를 높여 학습내용의 파지(retention)에 효과적이었다(p>.05). 실험집단의 심층면담 결과에서는 동기전략을 적용한 의미망 프로그램을 활용한 수업은 유전과 관련된 영상자료의 연결(link)로 호기심을 유발하여 주의집중이 잘 되었고, 직접 의미망을 제작해 봄으로써, 학습내용이 오랫동안 기억에 남아 문제해결에 효과적이었다는 긍정적인 반응을 보였다. 본 연구의 결과는 앞으로 고등학교 생물 I, '유전'단원에 대한 다양한 수업 전략을 모색하는데 의미있는 시사점을 제공해 줄 수 있을 것이다.

키워드 네트워크 분석 방법을 활용한 블록체인 트렌드 분석에 관한 연구 (A Study on Analysis of the Trend of Blockchain by Key Words Network Analysis)

  • 조성환
    • 한국정보전자통신기술학회논문지
    • /
    • 제11권5호
    • /
    • pp.550-555
    • /
    • 2018
  • 본 연구는 키워드 네트워크 분석에 사용되는 텍스트마이닝과 의미연결망 분석 방법을 활용하여 블록체인의 산업 활용 분야로 언론 및 정부 발표에서 언급되고 있는 '금융', '에너지', '물류'를 언급한 기사들을 비교 분석하였다. 블록체인 적용이 언급된 산업 분야별로 기사의 내용 및 키워드의 차이를 파악하고 비교 분석하는 것을 목적으로 하였다. 2017년 1월부터 2018년 7월까지 언론에서 보도한 총 43,093건의 기사를 Python BeautifulSoup을 이용하여 네이버 뉴스에서 수집하였고, 세 용어의 상호 중복을 제거하기 위한 정제 작업을 수행하였다. 이후 키워드 간 네트워크 분석을 위해 텍스톰(Textom)과 UCINET을 이용하여 세 용어에 대한 텍스트마이닝과 의미연결망 분석을 진행하였다. 분석 결과, 세 용어는 모두 '기술' 측면에서는 유사한 단어들이 있었으나, '정부 정책'이나 '산업'측면의 이슈 등에서 내용적 차이가 있었다. 또한 빈도 및 중심성에 있어서도 차이가 있음을 확인할 수 있었다.

빅데이터를 활용한 무인카페 소비자 인식에 관한 연구: 텍스트 마이닝과 의미연결망 분석을 중심으로 (A Study on the User Experience at Unmanned Cafe Using Big Data Analsis: Focus on text mining and semantic network analysis )

  • 이승엽;박병현;남장현
    • 아태비즈니스연구
    • /
    • 제14권3호
    • /
    • pp.241-250
    • /
    • 2023
  • Purpose - The purpose of this study was to investigate the perception of 'unmanned cafes' on the network through big data analysis, and to identify the latest trends in rapidly changing consumer perception. Based on this, I would like to suggest that it can be used as basic data for the revitalization of unmanned cafes and differentiated marketing strategies. Design/methodology/approach - This study collected documents containing unmanned cafe keywords for about three years, and the data collected using text mining techniques were analyzed using methods such as keyword frequency analysis, centrality analysis, and keyword network analysis. Findings - First, the top 10 words with a high frequency of appearance were identified in the order of unmanned cafes, unmanned cafes, start-up, operation, coffee, time, coffee machine, franchise, and robot cafes. Second, visualization of the semantic network confirmed that the key keyword "unmanned cafe" was at the center of the keyword cluster. Research implications or Originality - Using big data to collect and analyze keywords with high web visibility, we tried to identify new issues or trends in unmanned cafe recognition, which consists of keywords related to start-ups, mainly deals with topics related to start-ups when unmanned cafes are mentioned on the network.

Investigating Good Teaching and Learning Experiences in the Perspectives of University Students through Social Network Analysis

  • OH, Suna;LYU, Jeonghee;YUN, Heoncheol
    • Educational Technology International
    • /
    • 제21권2호
    • /
    • pp.193-216
    • /
    • 2020
  • This study investigated university students' perspectives on good class and instructional practices through social network analysis. The subjects were 321 students in the third and fourth academic years in a Korean university. The subjects completed four open-ended questions, asking about experience of good class, good instructors' teaching practice, and their feelings and attitudes when participating in good class. As social network analysis, KrKwic (Korea Key Words in Context) was used to compute word frequencies and analyze semantic network structures and Ucinet Netdraw to assess centrality in the social network, consisting of degree centrality, closeness centrality, and between centrality. The results are as follows. First, students showed 5 keywords to depict what good class is, including 'understanding', 'example', 'video', 'interest', and 'communication'. Second, the characteristics of teaching methods by professors who practice good class indicate 'assignments', 'questions', 'understanding', 'example', and 'feedback'. Third, the top 5 keywords of students' attitudes as participating in good class are 'active', 'participation', 'focus', 'listening', and 'asking'. Last, keywords depicting desirable class that students most wanted to take next time are 'assignments', 'rewards', 'understanding', 'difficulty', and 'interest'. The findings from this study include the meanings of the semantic network structures of words in the text making up messages. Also this study can provide empirical evidence for educators and educational practitioners in higher education to create effective learning environments.

Face inpainting via Learnable Structure Knowledge of Fusion Network

  • Yang, You;Liu, Sixun;Xing, Bin;Li, Kesen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권3호
    • /
    • pp.877-893
    • /
    • 2022
  • With the development of deep learning, face inpainting has been significantly enhanced in the past few years. Although image inpainting framework integrated with generative adversarial network or attention mechanism enhanced the semantic understanding among facial components, the issues of reconstruction on corrupted regions are still worthy to explore, such as blurred edge structure, excessive smoothness, unreasonable semantic understanding and visual artifacts, etc. To address these issues, we propose a Learnable Structure Knowledge of Fusion Network (LSK-FNet), which learns a prior knowledge by edge generation network for image inpainting. The architecture involves two steps: Firstly, structure information obtained by edge generation network is used as the prior knowledge for face inpainting network. Secondly, both the generated prior knowledge and the incomplete image are fed into the face inpainting network together to get the fusion information. To improve the accuracy of inpainting, both of gated convolution and region normalization are applied in our proposed model. We evaluate our LSK-FNet qualitatively and quantitatively on the CelebA-HQ dataset. The experimental results demonstrate that the edge structure and details of facial images can be improved by using LSK-FNet. Our model surpasses the compared models on L1, PSNR and SSIM metrics. When the masked region is less than 20%, L1 loss reduce by more than 4.3%.

영한 기계번역에서 전치사구를 해석하는 시스템 (An Analysis System of Prepositional Phrases in English-to-Korean Machine Translation)

  • 강원석
    • 한국정보처리학회논문지
    • /
    • 제3권7호
    • /
    • pp.1792-1802
    • /
    • 1996
  • 영한 기계번역에서 전치사구의 해석 부착의 문제(Attachment Problem)와 의미 해석의 문제, 그리고 해석에 필요한 정보 획득의 문제가 있다. 이 세 가지 문제를 해결하기 위하여 본 논문은 전치사구 해석 시스템을 제시한다. 이 시스템은 규칙 제어기와 신경망의 하이브리드 구문해석 시스템, 격의미 해석 시스템, 그리고 신경망 의 입력 정보를 자동으로 생성하는 의미속성 생성기로 구성한다. 의미속성 생성기는 시스템의 입력이 되는 의미속성을 자동으로 생성하는 방법으로 인위적인 방법의 단점 을보완하여 객관성 있는 전치사구 해석을 하게 한다. 격의미 해석 시스템은 영한 기계 번역에 맞는 격의미를 찾아내어 자연스런 한국어 생성을 하게 하고 구문해석 시스템은 규칙 방법의 장점과 신경망 방법의 장점을 취한 하이브리드 방식의 시스템으로 전치사 구 부착의 문제를 해결한다.

  • PDF

지식조직체계의 용어관계 유형에 관한 연구 (A Study on the Semantic Relationships in Knowledge Organization Systems)

  • 백지원;정연경
    • 한국문헌정보학회지
    • /
    • 제39권4호
    • /
    • pp.119-138
    • /
    • 2005
  • 본 연구는 현행의 용어관계가 가진 문제점을 파악하기 위하여 용어관계의 다양한 사례를 조사 분석하고 이를 바탕으로 용어관계를 체계화하고자 하였다. 이를 위해 용어관계가 기반이 되는 분류, 시소러스, 주제명표목을 비롯하여 의미망, 온톨로지, 데이터베이스 등 기존의 여러 지식조직체계를 용어관계의 측면에서 재조명하여 그 특성 및 상호관계를 파악하였다. 또한 이들 지식조직체계에 실질적으로 나타나는 각종 용어관계의 사례와 용어관계에 대한 연구들을 광범위하게 수집하여 다양한 용어관계의 유형을 파악하였다. 이렇게 수집된 다양한 용어관계를 분석하여 실재하는 용어관계의 체계화 방안을 모색하였다.

구술문서에 기초한 자동 용어 네트워크 구축 (Automatic term-network construction for Oral Documents)

  • 박순철
    • 한국산업정보학회논문지
    • /
    • 제12권4호
    • /
    • pp.25-31
    • /
    • 2007
  • 본 연구에서는 문서에 나타나는 용어의 통계값을 이용하여 구술문서자료에 포함되어있는 용어들간의 의미 네트워크를 자동으로 구축하는 시스템을 제안하였다. 본 연구를 위하여 전북 새만금지역에서 채록한 186개의 구술생애사 문서자료를 사용하였으며, 구축된 용어네트워크에서 용어들 사이의 관계는 용어들을 백터화하여 결정하였다. 새만금 구술문서에서 중요단어로 선택된 단어의 수는 약 1700여 개이다. 단어들 사이의 용어네트워크는 구축 시스템을 통해서 실시간 내에 표현할 수 있었다. 이 용어네트워크는 앞으로 전개될 시멘틱 검색시스템 구축에 새로운 장을 열 것이며, 구술문서 분석에 크게 기여할 것으로 기대한다.

  • PDF

Application of YOLOv5 Neural Network Based on Improved Attention Mechanism in Recognition of Thangka Image Defects

  • Fan, Yao;Li, Yubo;Shi, Yingnan;Wang, Shuaishuai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권1호
    • /
    • pp.245-265
    • /
    • 2022
  • In response to problems such as insufficient extraction information, low detection accuracy, and frequent misdetection in the field of Thangka image defects, this paper proposes a YOLOv5 prediction algorithm fused with the attention mechanism. Firstly, the Backbone network is used for feature extraction, and the attention mechanism is fused to represent different features, so that the network can fully extract the texture and semantic features of the defect area. The extracted features are then weighted and fused, so as to reduce the loss of information. Next, the weighted fused features are transferred to the Neck network, the semantic features and texture features of different layers are fused by FPN, and the defect target is located more accurately by PAN. In the detection network, the CIOU loss function is used to replace the GIOU loss function to locate the image defect area quickly and accurately, generate the bounding box, and predict the defect category. The results show that compared with the original network, YOLOv5-SE and YOLOv5-CBAM achieve an improvement of 8.95% and 12.87% in detection accuracy respectively. The improved networks can identify the location and category of defects more accurately, and greatly improve the accuracy of defect detection of Thangka images.