• Title/Summary/Keyword: self-excited force

Search Result 37, Processing Time 0.026 seconds

Vehicle Vibration Study by Tire Flat Spot (타이어 플랫 스팟에 의한 차량진동 연구)

  • Park, Ju-Pyo;Choi, Jung-Hyun;Lee, Sang-Ju
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1395-1400
    • /
    • 2007
  • Tire flat spot is a deformation which occurs around the contact patch during long-period parking and does hardly recovered even after driving. The deformation makes a tire self-excited and ride comfort gets worse. In this study, it is shown that the flat spot can be evaluated by measuring change in radial run out or force. Its effects on vibration at vehicle floor and steering wheel are also revealed. Finally it is shown that the flat spot is likely to occur if the inflation pressure is low and the tire is suppressed by a heavy load at a high temperature.

  • PDF

Analysis of the Friction Induced Instability of Disc Brake using Distributed Parameter Model (분포매개변수를 이용한 디스크 브레이크의 마찰기인 불안정성 해석)

  • 차병규;조용구;오재응
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.601-606
    • /
    • 2004
  • This paper deals with friction-induced vibration of disc brake system under constant friction coefficient. A linear, lumped and distributed parameter model to represent the floating caliper disc brake system is proposed. The complex eigenvalues are used to investigate the dynamic stability and in order to verify simulations which are based on the theoretical model, the experimental modal test and the dynamometer test are performed. The comparison of experimental and theoretical results shows a good agreement and the analysis indicates that mode coupling due to friction force is responsible for disc brake squeal. And squeal type instability is investigated by using the parametric analysis. This indicates parameters which have influence on the propensity of brake squeal. This helped to validate the analysis model and establish confidence in the analysis results. Also they may be useful during system development or diagnostic analysis.

  • PDF

Analysis of the Friction Induced Instability of Disc Brake Using Distributed Parameter Model (분포매개변수를 이용한 디스크 브레이크의 마찰기인 불안정성 해석)

  • 차병규;조용구;홍정혁;이유엽;이정윤;오재응
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.8
    • /
    • pp.702-708
    • /
    • 2004
  • This paper deals with friction-induced vibration of disc brake system under constant friction coefficient. A linear, lumped and distributed parameter model to represent the floating caliper disc brake system is proposed. The complex eigenvalues are used to investigate the dynamic stability and in order to verify simulations which are based on the theoretical model, the experimental modal test and the dynamometer test are performed. The comparison of experimental and theoretical results shows a good agreement and the analysis indicates that mode coupling due to friction force is responsible for disc brake squeal. And squeal type Instability is Investigated by using the parametric analysis. This indicates parameters which have influence on the propensity of brake squeal. This helped to validate the analysis model and establish confidence in the analysis results. Also they may be useful during system development or diagnostic analysis.

Friction-Induced Vibration of Brake Lining Pad (브레이크 라이닝 패드의 마찰 진동)

  • Choi, Y.S.;Jung, S.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.5
    • /
    • pp.93-100
    • /
    • 1994
  • Friction-induced vibration characteristics of automotive brake lining pad are investigated on the basis of experimental observations from a pin-on-disk type friction-induced vibration experimental apparatus. The measured responses of the experimental apparatus show limit cycles of quasi-harmonics type and beat phenomena due to the velocity dependence of friction force. To deduce the friction coefficient vs. relative velocity Lienard method is adopted with least square fit. It shows Scurve which characterizes a quasi-harmonic vibration. The calculation of amplitudes and friquencies of the limit cycles is done using slowly changing phase and amplitude method. The theoretical and numerical results show fairly good agreements with those of experiments.

  • PDF

A Simplified Formula of Bridge Deck Flutter Based on the Quasi-Steady (준정상 이론에 의한 교량 플러터의 간략식)

  • Cho, Young-Rae;Cho, Jae-Young;Lee, Hak-Eun
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.295-298
    • /
    • 2008
  • 유체내에 잠겨있는 물체의 진동은 공기력을 유발시키며 이러한 공기력에 의해 발생되는 진동을 물체의 거동에 의해 발생되는 가진이라 한다. 또한 물체에 작용하는 외부 공기력이 없이도 물체의 주기적인 움직임에 의해 발생되는 에너지로부터 공기력을 생성시킨다. 이러한 메커니즘에 의해 생성되는 공기력을 공기자발력(self-excited force) 이라 하며 교량의 내풍안정성과 관련이 있다. 본 논문에서는 MIE 메커니즘에 의해 발생되는 플루터 현상을 수학적으로 살펴보고, 단일모드에 대한 플러터계수를 이용한 플러터 발생풍속 산정식을 유도하였다. 또한 준정상 이론을 적용하여 단일모드에 대한 플러터 발생 예측식을 간략화하였다. 제안된 식의 플러터 발생풍속을 구조물의 진동수비가 서로 다른 3개의 $\pi$형 단면에 대해 검토하였다.

  • PDF

Photoacoustic Laser Doppler Velocimetrv Using the Self - mixing Effect of RF - excited CO2 Laser

  • Choi, Jong-Woon;You, Moon-Jong;Choi, Sung-Woong;Woo, Sam-Young
    • Journal of the Optical Society of Korea
    • /
    • v.8 no.4
    • /
    • pp.188-191
    • /
    • 2004
  • A new laser Doppler velocimeter employing a $CO_2$ laser has been developed by using its photoacoustic effect. A change in the pressure of a discharge, induced by mixing of a returned wave with an originally existing wave inside the cavity, is employed to detect the Doppler frequency shift. We found that a Doppler frequency shift as small as 50 kHz was detected, and also a good linear relationship between the velocity and the Doppler frequency shift was obtained.

Graphical technique for the flutter analysis of flexible bridge

  • Lee, Tzen Chin;Go, Cheer Germ
    • Wind and Structures
    • /
    • v.2 no.1
    • /
    • pp.41-49
    • /
    • 1999
  • The flutter of a bridge is induced by self-excited force factors such as lift, drag and aerodynamic moment. These factors are associated with flutter derivatives in the analysis of wind engineering. The flutter derivatives are the function of structure configuration, wind velocity and response circular frequency. Therefore, the governing equations for the interaction between the wind and dynamic response of the structure are complicated and highly nonlinear. Herein, a numerical algorithm through graphical technique for the solution of wind at flutter is presented. It provides a concise approach to the solution of wind velocity at flutter.

Analysis of FE/test result for con011ing the squeal noise of wheel brake system (휠제동장치의 스퀼소음 제어를 위한 해석결과 분석)

  • Cha, Jung-Kwon;Park, Yeong-Il;Lee, Dong-Kyun;Cho, Dong-Hun
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.595-600
    • /
    • 2009
  • Passengers in a vehicle feel uncomfortable due to squeal noise. Squeal noise, a kind of self-excited vibration, is generated by the friction force between the disc and the pad of the automobile. In this paper, modal analysis of wheel brake system was performed in order to prediction of squeal phenomenon. It was shown that the prediction of system instability is possible by FEM. Finite element model of that brake system was made. Some parts of a real brake was selected and modeled. The normal mode analysis method performs analyses of each brake system component. Experiment of modal analysis was performed for each brake components and experimental results were compared with analytical result from FEM. The complex eigenvalue analysis results compared with braking test. The analysis results show good correlation with braking test for the squeal frequency at an unstable mode.

  • PDF

Development of the FE(Finite Element) model for analysing the squeal noise of wheel brake system (휠 제동 장치의 스퀼 소음 해석을 위한 해석 모델 구축)

  • Cha, Jung-Kwon;Park, Yeong-Il;Lee, Dong-Kyun;Cho, Dong-Hun;Kim, Ki-Nam;Beak, Jin-Sung
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1407-1412
    • /
    • 2008
  • Squeal of disk brake is a noise and self excited vibration with frequency range of $1{\sim}10Khz$ cause by the friction force between the disk and the pad of the automobile. Passengers in a cehicle feel uncomfortable. In this paper modal analysis of wheel brake system was performed in order to prediction of squeal phenomenon. It was shown that the prediction of system instability is possible by FEM. finite element model of that brake system was made. Some parts of a real brake was selected and modeled. The normal mode analysis method performs analyses of each brake system component. Experiment of modal analysis was performed for each brake components and experimental results were compared with analytical result from FEM.

  • PDF

Spatial correlation of aerodynamic forces on 5:1 rectangular cylinder in different VIV stages

  • Lei, Yongfu;Sun, Yanguo;Zhang, Tianyi;Yang, Xiongwei;Li, Mingshui
    • Wind and Structures
    • /
    • v.34 no.1
    • /
    • pp.81-90
    • /
    • 2022
  • To better understand the vortex-induced vibration (VIV) characteristics of a 5:1 rectangular cylinder, the distribution of aerodynamic force and the non-dimensional power spectral density (PSD) of fluctuating pressure on the side surface were studied in different VIV development stages, and their differences in the stationary state and vibration stages were analyzed. The spanwise and streamwise correlations of surface pressures were studied, and the flow field structure partitions on the side surface were defined based on the streamwise correlation analysis. The results show that the variation tendencies of mean and root mean square (RMS) pressure coefficients are similar in different VIV development stages. The RMS values during amplitude growth are larger than those at peak amplitude, and the smallest RMS values are observed in the stationary state. The spanwise correlation coefficients of aerodynamic lifts increase with increase of the peak amplitude. However, for the lock-in region, the maximum spanwise correlation coefficient for aerodynamic lifts occurs in the VIV rising stage rather than in the peak amplitude stage, probably due to the interaction of vortex shedding force (VSF) and self-excited force (SEF). The streamwise correlation results show that the demarcation point positions between the recirculation region and the main vortex region remain almost constant in different VIV development stages, and the reattachment points gradually move to the tailing edge with increasing amplitude. This study provides a reference to estimate the demarcation point and reattachment point positions through streamwise correlation and phase angle analysis from wind tunnel tests.